Search results
Results From The WOW.Com Content Network
Algorithms to which the Method of Four Russians may be applied include: computing the transitive closure of a graph, Boolean matrix multiplication, edit distance calculation, sequence alignment, index calculation for binary jumbled pattern matching. In each of these cases it speeds up the algorithm by one or two logarithmic factors.
A divide and conquer paradigm to performing a triangulation in d dimensions is presented in "DeWall: A fast divide and conquer Delaunay triangulation algorithm in E d" by P. Cignoni, C. Montani, R. Scopigno. [18] The divide and conquer algorithm has been shown to be the fastest DT generation technique sequentially. [19] [20]
They start by assigning a random value to each variable in the formula. If the assignment satisfies all clauses, the algorithm terminates, returning the assignment. Otherwise, a variable is flipped and the above is then repeated until all the clauses are satisfied. WalkSAT and GSAT differ in the methods used to select which variable to flip.
In computer science, a 2–3–4 tree (also called a 2–4 tree) is a self-balancing data structure that can be used to implement dictionaries. The numbers mean a tree where every node with children (internal node) has either two, three, or four child nodes: a 2-node has one data element, and if internal has two child nodes;
The simplest pancake sorting algorithm performs at most 2n − 3 flips. In this algorithm, a kind of selection sort , we bring the largest pancake not yet sorted to the top with one flip; take it down to its final position with one more flip; and repeat this process for the remaining pancakes.
They start by randomly assigning values to each variable and then traverse the given Boolean expression to identify which variables to flip to minimize the number of unsatisfied clauses. They may randomly select a variable to flip or select a new random variable assignment to escape local maxima, much like a simulated annealing algorithm.
When C is input, the output is always C. Four of the sixteen have zero in one corner only, so the output of vector-matrix multiplication with Boolean arithmetic is always D, except for C input. Nine further logical matrices need description to fill out the labelled transition system where the matrices label the transitions.
The following algorithm using that relaxation is an expected (1-1/e)-approximation: [10] Solve the linear program L and obtain a solution O; Set variable x to be true with probability y x where y x is the value given in O. This algorithm can also be derandomized using the method of conditional probabilities.