Search results
Results From The WOW.Com Content Network
The curl of a vector field F, denoted by curl F, or , or rot F, is an operator that maps C k functions in R 3 to C k−1 functions in R 3, and in particular, it maps continuously differentiable functions R 3 → R 3 to continuous functions R 3 → R 3. It can be defined in several ways, to be mentioned below:
More generally, for a function of n variables (, …,), also called a scalar field, the gradient is the vector field: = (, …,) = + + where (=,,...,) are mutually orthogonal unit vectors. As the name implies, the gradient is proportional to, and points in the direction of, the function's most rapid (positive) change.
The classical Stokes' theorem relates the surface integral of the curl of a vector field over a surface in Euclidean three-space to the line integral of the vector field over its boundary. It is a special case of the general Stokes theorem (with n = 2 {\displaystyle n=2} ) once we identify a vector field with a 1-form using the metric on ...
The line integral of a vector field over a loop is equal to the surface integral of its curl over the enclosed surface. Stokes' theorem is a special case of the generalized Stokes theorem. [5] [6] In particular, a vector field on can be considered as a 1-form in which case its curl is its exterior derivative, a 2-form.
A vector field V defined on an open set S is called a gradient field or a conservative field if there exists a real-valued function (a scalar field) f on S such that = = (,,, …,). The associated flow is called the gradient flow , and is used in the method of gradient descent .
So statement 2 implies statement 3 (see full proof). 3 implies 1 Finally, assume that the third statement is true. A well-known vector calculus identity states that the curl of the gradient of any function is 0. (See proof.) Therefore, if the third statement is true, then the first statement must be true as well.
An example of a solenoidal vector field, (,) = (,) In vector calculus a solenoidal vector field (also known as an incompressible vector field , a divergence-free vector field , or a transverse vector field ) is a vector field v with divergence zero at all points in the field: ∇ ⋅ v = 0. {\displaystyle \nabla \cdot \mathbf {v} =0.}
Curl measures how much "rotation" a vector field has near a point. The Lie derivative is the rate of change of a vector or tensor field along the flow of another vector field. On vector fields, it is an example of a Lie bracket (vector fields form the Lie algebra of the diffeomorphism group of the manifold). It is a grade 0 derivation on the ...