Search results
Results From The WOW.Com Content Network
The curl of a vector field F, denoted by curl F, or , or rot F, is an operator that maps C k functions in R 3 to C k−1 functions in R 3, and in particular, it maps continuously differentiable functions R 3 → R 3 to continuous functions R 3 → R 3. It can be defined in several ways, to be mentioned below:
More generally, for a function of n variables (, …,), also called a scalar field, the gradient is the vector field: = (, …,) = + + where (=,,...,) are mutually orthogonal unit vectors. As the name implies, the gradient is proportional to, and points in the direction of, the function's most rapid (positive) change.
In vector calculus, divergence is a vector operator that operates on a vector field, producing a scalar field giving the quantity of the vector field's source at each point. More technically, the divergence represents the volume density of the outward flux of a vector field from an infinitesimal volume around a given point.
The line integral of a vector field over a loop is equal to the surface integral of its curl over the enclosed surface. Stokes' theorem is a special case of the generalized Stokes theorem. [5] [6] In particular, a vector field on can be considered as a 1-form in which case its curl is its exterior derivative, a 2-form.
The classical Stokes' theorem relates the surface integral of the curl of a vector field over a surface in Euclidean three-space to the line integral of the vector field over its boundary. It is a special case of the general Stokes theorem (with n = 2 {\displaystyle n=2} ) once we identify a vector field with a 1-form using the metric on ...
The curl of an order-n > 1 tensor field () is also defined using the recursive relation = ; = where c is an arbitrary constant vector and v is a vector field. Curl of a first-order tensor (vector) field
The vector field corresponding to the example shown. Vectors may point into or out of the sphere. The divergence theorem can be used to calculate a flux through a closed surface that fully encloses a volume, like any of the surfaces on the left. It can not directly be used to calculate the flux through surfaces with boundaries, like those on ...
Beltrami fields with a constant proportionality factor are a distinct category of vector fields that act as eigenfunctions of the curl operator. In essence, they are functions that map points in a three-dimensional space, either in (Euclidean space) or on a flat torus , to other points in the same space. Mathematically, this can be represented as: