When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Kinematics - Wikipedia

    en.wikipedia.org/wiki/Kinematics

    Kinematics is a subfield of physics and mathematics, developed in classical mechanics, that describes the motion of points, bodies (objects), and systems of bodies (groups of objects) without considering the forces that cause them to move.

  3. Moving magnet and conductor problem - Wikipedia

    en.wikipedia.org/wiki/Moving_magnet_and...

    See Figure 1. To simplify, let the magnetic field point in the z-direction and vary with location x, and let the conductor translate in the positive x-direction with velocity v. Consequently, in the magnet frame where the conductor is moving, the Lorentz force points in the negative y-direction, perpendicular to both the velocity, and the B-field.

  4. Action principles - Wikipedia

    en.wikipedia.org/wiki/Action_principles

    A system moving between two points takes one particular path; other similar paths are not taken. Each path corresponds to a value of the action. An action principle predicts or explains that the particular path taken has a stationary value for the system's action: similar paths near the one taken have very similar action value.

  5. Magnetic field - Wikipedia

    en.wikipedia.org/wiki/Magnetic_field

    The force on a negatively charged particle is in the opposite direction. If both the speed and the charge are reversed then the direction of the force remains the same. For that reason a magnetic field measurement (by itself) cannot distinguish whether there is a positive charge moving to the right or a negative charge moving to the left.

  6. Conservative force - Wikipedia

    en.wikipedia.org/wiki/Conservative_force

    For a proof, imagine two paths 1 and 2, both going from point A to point B. The variation of energy for the particle, taking path 1 from A to B and then path 2 backwards from B to A, is 0; thus, the work is the same in path 1 and 2, i.e., the work is independent of the path followed, as long as it goes from A to B.

  7. Force between magnets - Wikipedia

    en.wikipedia.org/wiki/Force_between_magnets

    If both poles are small enough to be represented as single points then they can be considered to be point magnetic charges. Classically , the force between two magnetic poles is given by: [ 1 ] F = μ q m 1 q m 2 4 π r 2 {\displaystyle F={{\mu q_{m1}q_{m2}} \over {4\pi r^{2}}}} where

  8. Newton's laws of motion - Wikipedia

    en.wikipedia.org/wiki/Newton's_laws_of_motion

    Newton's laws are often stated in terms of point or particle masses, that is, bodies whose volume is negligible. This is a reasonable approximation for real bodies when the motion of internal parts can be neglected, and when the separation between bodies is much larger than the size of each.

  9. Screw theory - Wikipedia

    en.wikipedia.org/wiki/Screw_theory

    All points in the body have the same component of the velocity along the axis, however the greater the distance from the axis the greater the velocity in the plane perpendicular to this axis. Thus, the helicoidal field formed by the velocity vectors in a moving rigid body flattens out the further the points are radially from the twist axis.