When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. List of mathematical constants - Wikipedia

    en.wikipedia.org/wiki/List_of_mathematical_constants

    Explanations of the symbols in the right hand column can be found by clicking on them. List. Name Symbol ... Pi 3.14159 26535 89793 ... [10] Negative one: −1 −1

  3. List of formulae involving π - Wikipedia

    en.wikipedia.org/wiki/List_of_formulae_involving_π

    More formulas of this nature can be given, as explained by Ramanujan's theory of elliptic functions to alternative bases. Perhaps the most notable hypergeometric inversions are the following two examples, involving the Ramanujan tau function τ {\displaystyle \tau } and the Fourier coefficients j {\displaystyle \mathrm {j} } of the J-invariant ...

  4. Euler's identity - Wikipedia

    en.wikipedia.org/wiki/Euler's_identity

    It can be seen that as N gets larger (1 + ⁠ iπ / N ⁠) N approaches a limit of −1. Euler's identity asserts that e i π {\displaystyle e^{i\pi }} is equal to −1. The expression e i π {\displaystyle e^{i\pi }} is a special case of the expression e z {\displaystyle e^{z}} , where z is any complex number .

  5. Pi - Wikipedia

    en.wikipedia.org/wiki/Pi

    The number π (/ p aɪ / ⓘ; spelled out as "pi") is a mathematical constant, approximately equal to 3.14159, that is the ratio of a circle's circumference to its diameter.It appears in many formulae across mathematics and physics, and some of these formulae are commonly used for defining π, to avoid relying on the definition of the length of a curve.

  6. Proof that π is irrational - Wikipedia

    en.wikipedia.org/wiki/Proof_that_π_is_irrational

    where is a non-negative integer. Two integrations by parts give the recurrence relation x 2 I n ( x ) = 2 n ( 2 n − 1 ) I n − 1 ( x ) − 4 n ( n − 1 ) I n − 2 ( x ) .

  7. Proof that 22/7 exceeds π - Wikipedia

    en.wikipedia.org/wiki/Proof_that_22/7_exceeds_π

    Proofs of the mathematical result that the rational number ⁠ 22 / 7 ⁠ is greater than π (pi) date back to antiquity. One of these proofs, more recently developed but requiring only elementary techniques from calculus, has attracted attention in modern mathematics due to its mathematical elegance and its connections to the theory of Diophantine approximations.

  8. Pi function - Wikipedia

    en.wikipedia.org/wiki/Pi_function

    (Pi function) – the gamma function when offset to coincide with the factorial Rectangular function π ( n ) {\displaystyle \pi (n)\,\!} – the Pisano period

  9. Basel problem - Wikipedia

    en.wikipedia.org/wiki/Basel_problem

    The Basel problem is a problem in mathematical analysis with relevance to number theory, concerning an infinite sum of inverse squares.It was first posed by Pietro Mengoli in 1650 and solved by Leonhard Euler in 1734, [1] and read on 5 December 1735 in The Saint Petersburg Academy of Sciences. [2]