When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Selection bias - Wikipedia

    en.wikipedia.org/wiki/Selection_bias

    Selection bias is the bias introduced by the selection of individuals, groups, or data for analysis in such a way that proper randomization is not achieved, thereby failing to ensure that the sample obtained is representative of the population intended to be analyzed. [1] It is sometimes referred to as the selection effect.

  3. Bias (statistics) - Wikipedia

    en.wikipedia.org/wiki/Bias_(statistics)

    Selection bias involves individuals being more likely to be selected for study than others, biasing the sample. This can also be termed selection effect, sampling bias and Berksonian bias. [3] Spectrum bias arises from evaluating diagnostic tests on biased patient samples, leading to an overestimate of the sensitivity and specificity of the ...

  4. Sampling bias - Wikipedia

    en.wikipedia.org/wiki/Sampling_bias

    Sampling bias is problematic because it is possible that a statistic computed of the sample is systematically erroneous. Sampling bias can lead to a systematic over- or under-estimation of the corresponding parameter in the population. Sampling bias occurs in practice as it is practically impossible to ensure perfect randomness in sampling.

  5. Heckman correction - Wikipedia

    en.wikipedia.org/wiki/Heckman_correction

    Heckman's correction involves a normality assumption, provides a test for sample selection bias and formula for bias corrected model. Suppose that a researcher wants to estimate the determinants of wage offers, but has access to wage observations for only those who work.

  6. Experimental uncertainty analysis - Wikipedia

    en.wikipedia.org/wiki/Experimental_uncertainty...

    Systematic errors in the measurement of experimental quantities leads to bias in the derived quantity, the magnitude of which is calculated using Eq(6) or Eq(7). However, there is also a more subtle form of bias that can occur even if the input, measured, quantities are unbiased; all terms after the first in Eq(14) represent this bias.

  7. Impact evaluation - Wikipedia

    en.wikipedia.org/wiki/Impact_evaluation

    Ignoring confounding factors can lead to a problem of omitted variable bias. In the special case of selection bias, the endogeneity of the selection variables can cause simultaneity bias. Spillover (referred to as contagion in the case of experimental evaluations) occurs when members of the comparison (control) group are affected by the ...

  8. Design effect - Wikipedia

    en.wikipedia.org/wiki/Design_effect

    Henry's [26] proposes an extended model-assisted weighting design-effect measure for single-stage sampling and calibration weight adjustments for a case where = + +, where is a vector of covariates, the model errors are independent, and the estimator of the population total is the general regression estimator (GREG) of Särndal, Swensson, and ...

  9. Regression dilution - Wikipedia

    en.wikipedia.org/wiki/Regression_dilution

    Charles Spearman developed in 1904 a procedure for correcting correlations for regression dilution, [10] i.e., to "rid a correlation coefficient from the weakening effect of measurement error". [11] In measurement and statistics, the procedure is also called correlation disattenuation or the disattenuation of correlation. [12]