Search results
Results From The WOW.Com Content Network
In statistics, the number of degrees of freedom is the number of values in the final calculation of a statistic that are free to vary. [1]Estimates of statistical parameters can be based upon different amounts of information or data.
In statistics and uncertainty analysis, the Welch–Satterthwaite equation is used to calculate an approximation to the effective degrees of freedom of a linear combination of independent sample variances, also known as the pooled degrees of freedom, [1] [2] corresponding to the pooled variance.
For the statistic t, with ν degrees of freedom, A(t | ν) is the probability that t would be less than the observed value if the two means were the same (provided that the smaller mean is subtracted from the larger, so that t ≥ 0). It can be easily calculated from the cumulative distribution function F ν (t) of the t distribution:
In each case, the formula for a test statistic that either exactly follows or closely approximates a t-distribution under the null hypothesis is given. Also, the appropriate degrees of freedom are given in each case. Each of these statistics can be used to carry out either a one-tailed or two-tailed test.
In statistics, Welch's t-test, or unequal variances t-test, is a two-sample location test which is used to test the (null) hypothesis that two populations have equal means. It is named for its creator, Bernard Lewis Welch , and is an adaptation of Student's t -test , [ 1 ] and is more reliable when the two samples have unequal variances and ...
Approximate formula for median (from the Wilson–Hilferty transformation) compared with numerical quantile (top); and difference (blue) and relative difference (red) between numerical quantile and approximate formula (bottom). For the chi-squared distribution, only the positive integer numbers of degrees of freedom (circles) are meaningful.
the number of degrees of freedom for each mean ( df = N − k ) where N is the total number of observations.) The distribution of q has been tabulated and appears in many textbooks on statistics.
In many scientific fields, the degrees of freedom of a system is the number of parameters of the system that may vary independently. For example, a point in the plane has two degrees of freedom for translation: its two coordinates; a non-infinitesimal object on the plane might have additional degrees of freedoms related to its orientation.