Search results
Results From The WOW.Com Content Network
The Kronecker delta has the so-called sifting property that for : = =. and if the integers are viewed as a measure space, endowed with the counting measure, then this property coincides with the defining property of the Dirac delta function () = (), and in fact Dirac's delta was named after the Kronecker delta because of this analogous property ...
In mathematics, the classical Kronecker limit formula describes the constant term at s = 1 of a real analytic Eisenstein series (or Epstein zeta function) in terms of the Dedekind eta function. There are many generalizations of it to more complicated Eisenstein series. It is named for Leopold Kronecker.
The delta function was introduced by physicist Paul Dirac, and has since been applied routinely in physics and engineering to model point masses and instantaneous impulses. It is called the delta function because it is a continuous analogue of the Kronecker delta function, which is usually defined on a discrete domain and takes values 0 and 1.
In mathematics, the Iverson bracket, named after Kenneth E. Iverson, is a notation that generalises the Kronecker delta, which is the Iverson bracket of the statement x = y. It maps any statement to a function of the free variables in that statement. This function is defined to take the value 1 for the values of the variables for which the ...
The formula is valid for all index values, and for any n (when n = 0 or n = 1, this is the empty product). ... The Levi-Civita symbol is related to the Kronecker delta.
The theory of Lagrange polynomials provides explicit formulas for the finite difference ... is the Kronecker delta, equal to one if =, and zero otherwise. ...
This is known as triple product expansion, or Lagrange's formula, [2] [3] although the latter name is also used for several other formulas. Its right hand side can be remembered by using the mnemonic "ACB − ABC", provided one keeps in mind which vectors are dotted together.
δ ij is the Kronecker delta. μ and λ are proportionality constants associated with the assumption that stress depends on strain linearly; μ is called the first coefficient of viscosity or shear viscosity (usually just called "viscosity") and λ is the second coefficient of viscosity or volume viscosity (and it is related to bulk viscosity).