When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. CTCF - Wikipedia

    en.wikipedia.org/wiki/CTCF

    CTCF's binding is disrupted by CpG methylation of the DNA it binds to. [24] On the other hand, CTCF binding may set boundaries for the spreading of DNA methylation. [25] In recent studies, CTCF binding loss is reported to increase localized CpG methylation, which reflected another epigenetic remodeling role of CTCF in human genome. [26] [27] [28]

  3. DNA replication - Wikipedia

    en.wikipedia.org/wiki/DNA_replication

    Eukaryotes initiate DNA replication at multiple points in the chromosome, so replication forks meet and terminate at many points in the chromosome. Because eukaryotes have linear chromosomes, DNA replication is unable to reach the very end of the chromosomes. Due to this problem, DNA is lost in each replication cycle from the end of the chromosome.

  4. Origin of replication - Wikipedia

    en.wikipedia.org/wiki/Origin_of_replication

    The origin of replication (also called the replication origin) is a particular sequence in a genome at which replication is initiated. [1] Propagation of the genetic material between generations requires timely and accurate duplication of DNA by semiconservative replication prior to cell division to ensure each daughter cell receives the full ...

  5. Topologically associating domain - Wikipedia

    en.wikipedia.org/wiki/Topologically_associating...

    Replication timing domains have been shown to be associated with TADs as their boundary is co localized with the boundaries of TADs that are located at either sides of compartments. [47] Insulated neighborhoods , DNA loops formed by CTCF/cohesin-bound regions, are proposed to functionally underlie TADs.

  6. Eukaryotic DNA replication - Wikipedia

    en.wikipedia.org/wiki/Eukaryotic_DNA_replication

    During DNA replication, the replisome will unwind the parental duplex DNA into a two single-stranded DNA template replication fork in a 5' to 3' direction. The leading strand is the template strand that is being replicated in the same direction as the movement of the replication fork.

  7. Replisome - Wikipedia

    en.wikipedia.org/wiki/Replisome

    DNA is a duplex formed by two anti-parallel strands. Following Meselson-Stahl, the process of DNA replication is semi-conservative, whereby during replication the original DNA duplex is separated into two daughter strands (referred to as the leading and lagging strand templates). Each daughter strand becomes part of a new DNA duplex.

  8. Origin recognition complex - Wikipedia

    en.wikipedia.org/wiki/Origin_Recognition_Complex

    When Mcm2-7 is first loaded it completely encircles the DNA and helicase activity is inhibited. In S phase, the Mcm2-7 complex interacts with helicase cofactors Cdc45 and GINS to isolate a single DNA strand, unwind the origin, and begin replication down the chromosome. In order to have bidirectional replication, this process happens twice at an ...

  9. E2F - Wikipedia

    en.wikipedia.org/wiki/E2F

    DNA microarray analysis reveals unique sets of target promoters among E2F family members suggesting that each protein has a unique role in the cell cycle. [2] Among E2F transcriptional targets are cyclins, CDKs, checkpoints regulators, DNA repair and replication proteins. Nonetheless, there is a great deal of redundancy among the family members.