Search results
Results From The WOW.Com Content Network
Analogous results for better behaved classes of continuous functions do exist, for example the Lipschitz functions, whose set of non-differentiability points must be a Lebesgue null set (Rademacher's theorem). When we try to draw a general continuous function, we usually draw the graph of a function which is Lipschitz or otherwise well-behaved.
It is differentiable everywhere except at the point x = 0, where it makes a sharp turn as it crosses the y-axis. A cusp on the graph of a continuous function. At zero, the function is continuous but not differentiable. If f is differentiable at a point x 0, then f must also be continuous at x 0. In particular, any differentiable function must ...
A Lipschitz function g : R → R is absolutely continuous and therefore is differentiable almost everywhere, that is, differentiable at every point outside a set of Lebesgue measure zero. Its derivative is essentially bounded in magnitude by the Lipschitz constant, and for a < b , the difference g ( b ) − g ( a ) is equal to the integral of ...
For a Lipschitz continuous function, there is a double cone (shown in white) whose vertex can be translated along the graph so that the graph always remains entirely outside the cone. The concept of continuity for functions between metric spaces can be strengthened in various ways by limiting the way δ {\displaystyle \delta } depends on ε ...
Differentiable functions between two manifolds are needed in order to formulate suitable notions of submanifolds, and other related concepts. If f : M → N is a differentiable function from a differentiable manifold M of dimension m to another differentiable manifold N of dimension n, then the differential of f is a mapping df : TM → TN.
Let : be a continuously-differentiable, strictly convex function defined on a convex set. The Bregman distance associated with F for points p , q ∈ Ω {\displaystyle p,q\in \Omega } is the difference between the value of F at point p and the value of the first-order Taylor expansion of F around point q evaluated at point p :
An arbitrary function φ : R n → C is the characteristic function of some random variable if and only if φ is positive definite, continuous at the origin, and if φ(0) = 1. Khinchine’s criterion. A complex-valued, absolutely continuous function φ, with φ(0) = 1, is a characteristic function if and only if it admits the representation
A bump function is a smooth function with compact support.. In mathematical analysis, the smoothness of a function is a property measured by the number of continuous derivatives (differentiability class) it has over its domain.