When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Inverse function - Wikipedia

    en.wikipedia.org/wiki/Inverse_function

    There is a symmetry between a function and its inverse. Specifically, if f is an invertible function with domain X and codomain Y, then its inverse f −1 has domain Y and image X, and the inverse of f −1 is the original function f. In symbols, for functions f:X → Y and f −1:Y → X, [13]

  3. Inverse function theorem - Wikipedia

    en.wikipedia.org/wiki/Inverse_function_theorem

    If an invertible function is C k with >, then so too is its inverse. This follows by induction using the fact that the map F ( A ) = A − 1 {\displaystyle F(A)=A^{-1}} on operators is C k for any k {\displaystyle k} (in the finite-dimensional case this is an elementary fact because the inverse of a matrix is given as the adjugate matrix ...

  4. Jacobian matrix and determinant - Wikipedia

    en.wikipedia.org/wiki/Jacobian_matrix_and...

    For instance, the continuously differentiable function f is invertible near a point p ∈ R n if the Jacobian determinant at p is non-zero. This is the inverse function theorem. Furthermore, if the Jacobian determinant at p is positive, then f preserves orientation near p; if it is negative, f reverses orientation.

  5. Cancellation property - Wikipedia

    en.wikipedia.org/wiki/Cancellation_property

    In a semigroup, a left-invertible element is left-cancellative, and analogously for right and two-sided. If a −1 is the left inverse of a, then a ∗ b = a ∗ c implies a −1 ∗ (a ∗ b) = a −1 ∗ (a ∗ c), which implies b = c by associativity. For example, every quasigroup, and thus every group, is cancellative.

  6. Inverse function rule - Wikipedia

    en.wikipedia.org/wiki/Inverse_function_rule

    In calculus, the inverse function rule is a formula that expresses the derivative of the inverse of a bijective and differentiable function f in terms of the derivative of f. More precisely, if the inverse of f {\displaystyle f} is denoted as f − 1 {\displaystyle f^{-1}} , where f − 1 ( y ) = x {\displaystyle f^{-1}(y)=x} if and only if f ...

  7. Function composition - Wikipedia

    en.wikipedia.org/wiki/Function_composition

    By convention, f 0 is defined as the identity map on f 's domain, id X. If Y = X and f: X → X admits an inverse function f −1, negative functional powers f −n are defined for n > 0 as the negated power of the inverse function: f −n = (f −1) n. [12] [10] [11]

  8. Integral of inverse functions - Wikipedia

    en.wikipedia.org/wiki/Integral_of_inverse_functions

    Since and the inverse function : are continuous, they have antiderivatives by the fundamental theorem of calculus. Laisant proved that if F {\displaystyle F} is an antiderivative of f {\displaystyle f} , then the antiderivatives of f − 1 {\displaystyle f^{-1}} are:

  9. Condition number - Wikipedia

    en.wikipedia.org/wiki/Condition_number

    Condition numbers can also be defined for nonlinear functions, and can be computed using calculus.The condition number varies with the point; in some cases one can use the maximum (or supremum) condition number over the domain of the function or domain of the question as an overall condition number, while in other cases the condition number at a particular point is of more interest.