When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Condition number - Wikipedia

    en.wikipedia.org/wiki/Condition_number

    The condition number is derived from the theory of propagation of uncertainty, and is formally defined as the value of the asymptotic worst-case relative change in output for a relative change in input. The "function" is the solution of a problem and the "arguments" are the data in the problem. The condition number is frequently applied to ...

  3. Matrix multiplication - Wikipedia

    en.wikipedia.org/wiki/Matrix_multiplication

    The result matrix has the number of rows of the first and the number of columns of the second matrix. In mathematics, specifically in linear algebra, matrix multiplication is a binary operation that produces a matrix from two matrices. For matrix multiplication, the number of columns in the first matrix must be equal to the number of rows in ...

  4. Matrix multiplication algorithm - Wikipedia

    en.wikipedia.org/wiki/Matrix_multiplication...

    The definition of matrix multiplication is that if C = AB for an n × m matrix A and an m × p matrix B, then C is an n × p matrix with entries. From this, a simple algorithm can be constructed which loops over the indices i from 1 through n and j from 1 through p, computing the above using a nested loop: Input: matrices A and B.

  5. Moore–Penrose inverse - Wikipedia

    en.wikipedia.org/wiki/Moore–Penrose_inverse

    Using the pseudoinverse and a matrix norm, one can define a condition number for any matrix: = ‖ ‖ ‖ + ‖. A large condition number implies that the problem of finding least-squares solutions to the corresponding system of linear equations is ill-conditioned in the sense that small errors in the entries of ⁠ A {\displaystyle A} ⁠ can ...

  6. Computational complexity of matrix multiplication - Wikipedia

    en.wikipedia.org/wiki/Computational_complexity...

    Directly applying the mathematical definition of matrix multiplication gives an algorithm that requires n3 field operations to multiply two n × n matrices over that field (Θ (n3) in big O notation). Surprisingly, algorithms exist that provide better running times than this straightforward "schoolbook algorithm".

  7. Preconditioner - Wikipedia

    en.wikipedia.org/wiki/Preconditioner

    Preconditioner. In mathematics, preconditioning is the application of a transformation, called the preconditioner, that conditions a given problem into a form that is more suitable for numerical solving methods. Preconditioning is typically related to reducing a condition number of the problem.

  8. Hadamard product (matrices) - Wikipedia

    en.wikipedia.org/wiki/Hadamard_product_(matrices)

    The Hadamard product operates on identically shaped matrices and produces a third matrix of the same dimensions. In mathematics, the Hadamard product (also known as the element-wise product, entrywise product [1]: ch. 5 or Schur product [2]) is a binary operation that takes in two matrices of the same dimensions and returns a matrix of the multiplied corresponding elements.

  9. Cannon's algorithm - Wikipedia

    en.wikipedia.org/wiki/Cannon's_algorithm

    In computer science, Cannon's algorithm is a distributed algorithm for matrix multiplication for two-dimensional meshes first described in 1969 by Lynn Elliot Cannon. [1][2] It is especially suitable for computers laid out in an N × N mesh. [3] While Cannon's algorithm works well in homogeneous 2D grids, extending it to heterogeneous 2D grids ...