When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Eigenvalues and eigenvectors - Wikipedia

    en.wikipedia.org/wiki/Eigenvalues_and_eigenvectors

    Eigenvalues and eigenvectors. In linear algebra, an eigenvector (/ ˈaɪɡən -/ EYE-gən-) or characteristic vector is a vector that has its direction unchanged by a given linear transformation. More precisely, an eigenvector, , of a linear transformation, , is scaled by a constant factor, , when the linear transformation is applied to it: .

  3. Quantum state - Wikipedia

    en.wikipedia.org/wiki/Quantum_state

    In quantum physics, a quantum state is a mathematical entity that embodies the knowledge of a quantum system. Quantum mechanics specifies the construction, evolution, and measurement of a quantum state. The result is a prediction for the system represented by the state. Knowledge of the quantum state, and the rules for the system's evolution in ...

  4. Quantum harmonic oscillator - Wikipedia

    en.wikipedia.org/wiki/Quantum_harmonic_oscillator

    The quantum harmonic oscillator is the quantum-mechanical analog of the classical harmonic oscillator. Because an arbitrary smooth potential can usually be approximated as a harmonic potential at the vicinity of a stable equilibrium point, it is one of the most important model systems in quantum mechanics.

  5. Jaynes–Cummings model - Wikipedia

    en.wikipedia.org/wiki/Jaynes–Cummings_model

    The Jaynes–Cummings model (sometimes abbreviated JCM) is a theoretical model in quantum optics. It describes the system of a two-level atom interacting with a quantized mode of an optical cavity (or a bosonic field), with or without the presence of light (in the form of a bath of electromagnetic radiation that can cause spontaneous emission ...

  6. Stationary state - Wikipedia

    en.wikipedia.org/wiki/Stationary_state

    A stationary state is a quantum state with all observables independent of time. It is an eigenvector of the energy operator (instead of a quantum superposition of different energies). It is also called energy eigenvector, energy eigenstate, energy eigenfunction, or energy eigenket. It is very similar to the concept of atomic orbital and ...

  7. Eigendecomposition of a matrix - Wikipedia

    en.wikipedia.org/wiki/Eigendecomposition_of_a_matrix

    hide. In linear algebra, eigendecomposition is the factorization of a matrix into a canonical form, whereby the matrix is represented in terms of its eigenvalues and eigenvectors. Only diagonalizable matrices can be factorized in this way. When the matrix being factorized is a normal or real symmetric matrix, the decomposition is called ...

  8. Quantum superposition - Wikipedia

    en.wikipedia.org/wiki/Quantum_superposition

    Quantum superposition is a fundamental principle of quantum mechanics that states that linear combinations of solutions to the Schrödinger equation are also solutions of the Schrödinger equation. This follows from the fact that the Schrödinger equation is a linear differential equation in time and position. More precisely, the state of a ...

  9. Pauli matrices - Wikipedia

    en.wikipedia.org/wiki/Pauli_matrices

    Its eigenvalues are therefore [d] 1 or −1. It may thus be utilized as an interaction term in a Hamiltonian, splitting the energy eigenvalues of its symmetric versus antisymmetric eigenstates. It may thus be utilized as an interaction term in a Hamiltonian, splitting the energy eigenvalues of its symmetric versus antisymmetric eigenstates.