When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Canonical commutation relation - Wikipedia

    en.wikipedia.org/wiki/Canonical_commutation_relation

    In quantum mechanics, the canonical commutation relation is the fundamental relation between canonical conjugate quantities (quantities which are related by definition such that one is the Fourier transform of another). For example, between the position operator x and momentum operator px in the x direction of a point particle in one dimension ...

  3. Lie bracket of vector fields - Wikipedia

    en.wikipedia.org/wiki/Lie_bracket_of_vector_fields

    In the mathematical field of differential topology, the Lie bracket of vector fields, also known as the Jacobi–Lie bracket or the commutator of vector fields, is an operator that assigns to any two vector fields X and Y on a smooth manifold M a third vector field denoted [X, Y]. Conceptually, the Lie bracket [X, Y] is the derivative of Y ...

  4. Heisenberg picture - Wikipedia

    en.wikipedia.org/wiki/Heisenberg_picture

    Commutator relations may look different than in the Schrödinger picture, because of the time dependence of operators. For example, consider the operators x(t 1), x(t 2), p(t 1) and p(t 2). The time evolution of those operators depends on the Hamiltonian of the system.

  5. Commutator - Wikipedia

    en.wikipedia.org/wiki/Commutator

    Group theory. The commutator of two elements, g and h, of a group G, is the element. [g, h] = g−1h−1gh. This element is equal to the group's identity if and only if g and h commute (that is, if and only if gh = hg). The set of all commutators of a group is not in general closed under the group operation, but the subgroup of G generated by ...

  6. Conjugate variables - Wikipedia

    en.wikipedia.org/wiki/Conjugate_variables

    For every non-zero commutator of two operators, there exists an "uncertainty principle", which in our present example may be expressed in the form: / In this ill-defined notation, Δ x {\displaystyle \Delta x} and Δ p {\displaystyle \Delta p} denote "uncertainty" in the simultaneous specification of x {\displaystyle x} and p {\displaystyle p} .

  7. Commutator subgroup - Wikipedia

    en.wikipedia.org/wiki/Commutator_subgroup

    Commutator subgroup. Smallest normal subgroup by which the quotient is commutative. In mathematics, more specifically in abstract algebra, the commutator subgroup or derived subgroup of a group is the subgroup generated by all the commutators of the group. [1][2] The commutator subgroup is important because it is the smallest normal subgroup ...

  8. Jacobi identity - Wikipedia

    en.wikipedia.org/wiki/Jacobi_identity

    Jacobi identity. In mathematics, the Jacobi identity is a property of a binary operation that describes how the order of evaluation, the placement of parentheses in a multiple product, affects the result of the operation. By contrast, for operations with the associative property, any order of evaluation gives the same result (parentheses in a ...

  9. Levi-Civita connection - Wikipedia

    en.wikipedia.org/wiki/Levi-Civita_connection

    The metric g can take up to two vectors or vector fields X, Y as arguments. In the former case the output is a number, the (pseudo-)inner product of X and Y. In the latter case, the inner product of X p, Y p is taken at all points p on the manifold so that g(X, Y) defines a smooth function on M. Vector fields act (by definition) as differential ...