When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Glycolysis - Wikipedia

    en.wikipedia.org/wiki/Glycolysis

    Glycolysis is the metabolic pathway that converts glucose (C 6 H 12 O 6) into pyruvate and, in most organisms, occurs in the liquid part of cells (the cytosol). The free energy released in this process is used to form the high-energy molecules adenosine triphosphate (ATP) and reduced nicotinamide adenine dinucleotide (NADH). [ 1 ]

  3. Pyruvate dehydrogenase complex - Wikipedia

    en.wikipedia.org/wiki/Pyruvate_dehydrogenase_complex

    Acetyl-CoA may then be used in the citric acid cycle to carry out cellular respiration, and this complex links the glycolysis metabolic pathway to the citric acid cycle. Pyruvate decarboxylation is also known as the "pyruvate dehydrogenase reaction" because it also involves the oxidation of pyruvate. [2]

  4. Enolase - Wikipedia

    en.wikipedia.org/wiki/Enolase

    Enolase is a member of the large enolase superfamily.It has a molecular weight of 82,000–100,000 daltons depending on the isoform. [3] [4] In human alpha enolase, the two subunits are antiparallel in orientation so that Glu 20 of one subunit forms an ionic bond with Arg 414 of the other subunit. [3]

  5. Template:Glycolysis summary - Wikipedia

    en.wikipedia.org/wiki/Template:Glycolysis_summary

    "The metabolic pathway of glycolysis converts glucose to pyruvate via a series of intermediate metabolites. Each chemical modification (red box) is performed by a different enzyme. Steps 1 and 3 consume ATP (blue) and steps 7 and 10 produce ATP (yellow). Since steps 6-10 occur twice per glucose molecule, this leads to a net production of energy."

  6. Malate–aspartate shuttle - Wikipedia

    en.wikipedia.org/wiki/Malate–aspartate_shuttle

    Illustration of the malate–aspartate shuttle pathway. The malate–aspartate shuttle (sometimes simply the malate shuttle) is a biochemical system for translocating electrons produced during glycolysis across the semipermeable inner membrane of the mitochondrion for oxidative phosphorylation in eukaryotes.

  7. Glyceroneogenesis - Wikipedia

    en.wikipedia.org/wiki/Glyceroneogenesis

    Glyceroneogenesis is a metabolic pathway which synthesizes glycerol 3-phosphate (used to form triglycerides) from precursors other than glucose. [1] Usually, glycerol 3-phosphate is generated from glucose by glycolysis, in the liquid of the cell's cytoplasm (the cytosol).

  8. Hexokinase - Wikipedia

    en.wikipedia.org/wiki/Hexokinase

    By catalyzing the phosphorylation of glucose to yield glucose 6-phosphate, hexokinases maintain the downhill concentration gradient that favors the facilitated transport of glucose into cells. This reaction also initiates all physiologically relevant pathways of glucose utilization, including glycolysis and the pentose phosphate pathway. [9]

  9. Phosphoglycerate kinase - Wikipedia

    en.wikipedia.org/wiki/Phosphoglycerate_kinase

    In the glycolytic pathway, 1,3-BPG is the phosphate donor and has a high phosphoryl-transfer potential. The PGK-catalyzed transfer of the phosphate group from 1,3-BPG to ADP to yield ATP can power [clarification needed] the carbon-oxidation reaction of the previous glycolytic step (converting glyceraldehyde 3-phosphate to 3-phosphoglycerate).