Search results
Results From The WOW.Com Content Network
For example, a person with chronic kidney disease may develop oedema due to failure of the kidneys to regulate water balance. They may develop evidence of chronic kidney disease, that can be used to assess its severity, for example high blood pressure , osteoporosis or anaemia .
This encompasses all functions of the kidney, including maintenance of acid-base balance; regulation of fluid balance; regulation of sodium, potassium, and other electrolytes; clearance of toxins; absorption of glucose, amino acids, and other small molecules; regulation of blood pressure; production of various hormones, such as erythropoietin ...
Fluid balance is an aspect of the homeostasis of organisms in which the amount of water in the organism needs to be controlled, via osmoregulation and behavior, such that the concentrations of electrolytes (salts in solution) in the various body fluids are kept within healthy ranges.
Normal physiological stimulation of the efferent sympathetic nerves of the kidney is involved in maintaining the balance of water and sodium in the body. Activation of the efferent sympathetic nerves of the kidney reduces its blood flow , and respectively, filtration and excretion of sodium in the urine, and also increases the rate of renin ...
To achieve such balance between water and ions, the loop of Henle coordinates its function with the collecting duct to regulate the amount of water to reabsorb or to excrete. While the loop of Henle makes the medulla of the kidney salty, the collecting duct regulates the permeability of water that could be reabsorbed to such salty environment.
The collecting duct system is the final component of the kidney to influence the body's electrolyte and fluid balance. In humans, the system accounts for 4–5% of the kidney's reabsorption of sodium and 5% of the kidney's reabsorption of water. At times of extreme dehydration, over 24% of the filtered water may be reabsorbed in the collecting ...
The kidneys are a pair of organs of the excretory system in vertebrates, which maintain the balance of water and electrolytes in the body (osmoregulation), filter the blood, remove metabolic waste products, and, in many vertebrates, also produce hormones (in particular, renin) and maintain blood pressure.
The kidney participates in whole-body homeostasis, regulating acid–base balance, electrolyte concentrations, extracellular fluid volume, and blood pressure. The kidney accomplishes these homeostatic functions both independently and in concert with other organs, particularly those of the endocrine system.