Search results
Results From The WOW.Com Content Network
[7] Jeffrey Lagarias stated in 2010 that the Collatz conjecture "is an extraordinarily difficult problem, completely out of reach of present day mathematics". [8] However, though the Collatz conjecture itself remains open, efforts to solve the problem have led to new techniques and many partial results. [8] [9]
The Collatz Conjecture. In September 2019, news broke regarding progress on this 82-year-old question, thanks to prolific mathematician Terence Tao. ... If the Riemann Hypothesis were solved ...
[4] [6] He proved Keller's conjecture in dimension seven in 2020. [7] In 2018, Heule and Scott Aaronson received funding from the National Science Foundation to apply SAT solving to the Collatz conjecture. [7] In 2023 together with Subercaseaux, he proved that the packing chromatic number of the infinite square grid is 15 [8] [9]
As reformulated, it became the "paving conjecture" for Euclidean spaces, and then a question on random polynomials, in which latter form it was solved affirmatively. 2015: Jean Bourgain, Ciprian Demeter, and Larry Guth: Main conjecture in Vinogradov's mean-value theorem: analytic number theory: Bourgain–Demeter–Guth theorem, ⇐ decoupling ...
Lothar Collatz (German:; July 6, 1910 – September 26, 1990) was a German mathematician, born in Arnsberg, Westphalia. The "3x + 1" problem is also known as the Collatz conjecture, named after him and still unsolved. The Collatz–Wielandt formula for the Perron–Frobenius eigenvalue of a positive square matrix was also named after him.
The seventh problem, the Poincaré conjecture, was solved by Grigori Perelman in 2003. [14] However, a generalization called the smooth four-dimensional Poincaré conjecture —that is, whether a four -dimensional topological sphere can have two or more inequivalent smooth structures —is unsolved.
The conjecture is that there is a simple way to tell whether such equations have a finite or infinite number of rational solutions. More specifically, the Millennium Prize version of the conjecture is that, if the elliptic curve E has rank r , then the L -function L ( E , s ) associated with it vanishes to order r at s = 1 .
For instance, the Collatz conjecture, which concerns whether or not certain sequences of integers terminate, has been tested for all integers up to 1.2 × 10 12 (1.2 trillion). However, the failure to find a counterexample after extensive search does not constitute a proof that the conjecture is true—because the conjecture might be false but ...