Search results
Results From The WOW.Com Content Network
μ 0 is the permeability of space, which equals 4π×10 −7 T·m/A; B is the flux density, in T; The derivation of this equation is analogous to the force between two nearby electrically charged surfaces, [5] which assumes that the field in between the plates is uniform.
10 4 N 16.5 kN The bite force of a 5.2 m (17 ft) saltwater crocodile [20] 18 kN The estimated bite force of a 6.1 m (20 ft) adult great white shark [21] 25 kN Approximate force applied by the motors of a Tesla Model S during maximal acceleration [22] 25.5 to 34.5 kN The estimated bite force of a large 6.7 m (22 ft) adult saltwater crocodile [23]
It is generally argued that the Aharonov–Bohm effect illustrates the physicality of electromagnetic potentials, Φ and A, in quantum mechanics.Classically it was possible to argue that only the electromagnetic fields are physical, while the electromagnetic potentials are purely mathematical constructs, that due to gauge freedom are not even unique for a given electromagnetic field.
For example, any electron's magnetic moment is measured to be −9.284 764 × 10 −24 J/T. [17] The direction of the magnetic moment of any elementary particle is entirely determined by the direction of its spin , with the negative value indicating that any electron's magnetic moment is antiparallel to its spin.
In atomic physics, the electron magnetic moment, or more specifically the electron magnetic dipole moment, is the magnetic moment of an electron resulting from its intrinsic properties of spin and electric charge. The value of the electron magnetic moment (symbol μ e) is −9.284 764 6917 (29) × 10 −24 J⋅T −1. [1]
Lorentz force acting on fast-moving charged particles in a bubble chamber.Positive and negative charge trajectories curve in opposite directions. In physics, specifically in electromagnetism, the Lorentz force law is the combination of electric and magnetic force on a point charge due to electromagnetic fields.
Electric charge (symbol q, sometimes Q) is a physical property of matter that causes it to experience a force when placed in an electromagnetic field. Electric charge can be positive or negative . Like charges repel each other and unlike charges attract each other.
The electron's electric dipole moment (EDM) must be collinear with the direction of the electron's magnetic moment (spin). [1] Within the Standard Model, such a dipole is predicted to be non-zero but very small, at most 10 −38 e⋅cm, [2] where e stands for the elementary charge.