Search results
Results From The WOW.Com Content Network
The pentagram map takes a given polygon, finds the intersections of the shortest diagonals of the polygon, and constructs a new polygon from these intersections. Richard Schwartz introduced the pentagram map for a general polygon in a 1992 paper [ 1 ] though it seems that the special case, in which the map is defined for pentagons only, goes ...
Many mathematical problems have been stated but not yet solved. These problems come from many areas of mathematics, such as theoretical physics, computer science, algebra, analysis, combinatorics, algebraic, differential, discrete and Euclidean geometries, graph theory, group theory, model theory, number theory, set theory, Ramsey theory, dynamical systems, and partial differential equations.
If K is a field (such as the complex numbers), a Puiseux series with coefficients in K is an expression of the form = = + / where is a positive integer and is an integer. In other words, Puiseux series differ from Laurent series in that they allow for fractional exponents of the indeterminate, as long as these fractional exponents have bounded denominator (here n).
The simplest polygon which can cross itself; the simplest polygon which can be concave; the simplest polygon which can be non-cyclic. Can tile the plane. pentagon: 5 [21] The simplest polygon which can exist as a regular star. A star pentagon is known as a pentagram or pentacle. hexagon: 6
F 0 = 3, F 1 = 5, F 2 = 17, F 3 = 257, and F 4 = 65537 (sequence A019434 in the OEIS). Since there are 31 nonempty subsets of the five known Fermat primes, there are 31 known constructible polygons with an odd number of sides. The next twenty-eight Fermat numbers, F 5 through F 32, are known to be composite. [3] Thus a regular n-gon is ...
Furthermore, for the case that is an arbitrary convex polygon, the global relation can be solved numerically in a straightforward way, for example using MATLAB. Also, for the case that is a convex polygon, the Fokas method constructs an integral representation in the Fourier complex plane. By using this representation together with the global ...
In mathematics and its applications, the signed distance function or signed distance field (SDF) is the orthogonal distance of a given point x to the boundary of a set Ω in a metric space (such as the surface of a geometric shape), with the sign determined by whether or not x is in the interior of Ω.
Two different pants decompositions for the surface of genus 2. The importance of the pairs of pants in the study of surfaces stems from the following property: define the complexity of a connected compact surface of genus with boundary components to be () = +, and for a non-connected surface take the sum over all components.