Search results
Results From The WOW.Com Content Network
where is the length of the conductor, measured in metres [m], A is the cross-section area of the conductor measured in square metres [m 2], σ is the electrical conductivity measured in siemens per meter (S·m −1), and ρ is the electrical resistivity (also called specific electrical resistance) of the material, measured in ohm-metres (Ω·m ...
Diamond is the best natural conductor of heat; it even feels cold to the touch. Its thermal conductivity (2,200 W/m•K) is five times greater than the most conductive metal (Ag at 429); 300 times higher than the least conductive metal (Pu at 6.74); and nearly 4,000 times that of water (0.58) and 100,000 times that of air (0.0224). This high ...
Metals and other solid materials expand upon heating and contract upon cooling. This is an undesirable occurrence in electrical systems. Copper has a low coefficient of thermal expansion for an electrical conducting material. Aluminium, an alternate common conductor, expands nearly one third more than copper under increasing temperatures.
Copper is used as a conductor of heat and electricity, as a building material, and as a constituent of various metal alloys, such as sterling silver used in jewelry, cupronickel used to make marine hardware and coins, and constantan used in strain gauges and thermocouples for temperature measurement.
Most metals have electrical resistance. In simpler models (non quantum mechanical models) this can be explained by replacing electrons and the crystal lattice by a wave-like structure. When the electron wave travels through the lattice, the waves interfere, which causes resistance. The more regular the lattice is, the less disturbance happens ...
The powder-in-tube (PIT, or oxide powder in tube, OPIT) process is an extrusion process often used for making electrical conductors from brittle superconducting materials such as niobium–tin [10] or magnesium diboride, [11] and ceramic cuprate superconductors such as BSCCO. [12] [13] It has been used to form wires of the iron pnictides. [14]
The defining property of a perfect conductor is that static electric field and the charge density both vanish in its interior. If the conductor has excess charge, it accumulates as an infinitesimally thin layer of surface charge. An external electric field is screened from the interior of the material by rearrangement of the surface charge. [1]
Mu-metal shields for cathode-ray tubes (CRTs) used in oscilloscopes, from a 1945 electronics magazine. Mu-metal is a soft magnetic alloy with exceptionally high magnetic permeability. The high permeability of mu-metal provides a low reluctance path for magnetic flux, leading to its use in magnetic shields against static or slowly varying ...