When.com Web Search

  1. Ads

    related to: expectation algebra formula examples

Search results

  1. Results From The WOW.Com Content Network
  2. Expected value - Wikipedia

    en.wikipedia.org/wiki/Expected_value

    In classical mechanics, the center of mass is an analogous concept to expectation. For example, suppose X is a discrete random variable with values x i and corresponding probabilities p i. Now consider a weightless rod on which are placed weights, at locations x i along the rod and having masses p i (whose sum is one).

  3. Conditional expectation - Wikipedia

    en.wikipedia.org/wiki/Conditional_expectation

    The unconditional expectation of rainfall for an unspecified day is the average of the rainfall amounts for those 3652 days. The conditional expectation of rainfall for an otherwise unspecified day known to be (conditional on being) in the month of March, is the average of daily rainfall over all 310 days of the ten–year period that fall in ...

  4. Law of total expectation - Wikipedia

    en.wikipedia.org/wiki/Law_of_total_expectation

    The proposition in probability theory known as the law of total expectation, [1] the law of iterated expectations [2] (LIE), Adam's law, [3] the tower rule, [4] and the smoothing theorem, [5] among other names, states that if is a random variable whose expected value ⁡ is defined, and is any random variable on the same probability space, then

  5. Algebra of random variables - Wikipedia

    en.wikipedia.org/wiki/Algebra_of_random_variables

    An expectation E on an algebra A of random variables is a normalized, positive linear functional. What this means is that E[k] = k where k is a constant; E[X * X] ≥ 0 for all random variables X; E[X + Y] = E[X] + E[Y] for all random variables X and Y; and; E[kX] = kE[X] if k is a constant. One may generalize this setup, allowing the algebra ...

  6. Martingale (probability theory) - Wikipedia

    en.wikipedia.org/wiki/Martingale_(probability...

    In probability theory, a martingale is a sequence of random variables (i.e., a stochastic process) for which, at a particular time, the conditional expectation of the next value in the sequence is equal to the present value, regardless of all prior values. Stopped Brownian motion is an example of a martingale. It can model an even coin-toss ...

  7. Wald's equation - Wikipedia

    en.wikipedia.org/wiki/Wald's_equation

    Very similar to the second example above, let (X n) n∈ be a sequence of independent, symmetric random variables, where X n takes each of the values 2 n and –2 n with probability ⁠ 1 / 2 ⁠. Let N be the first n ∈ such that X n = 2 n. Then, as above, N has finite expectation, hence assumption holds.