Search results
Results From The WOW.Com Content Network
Hearing becomes gradually less sensitive as frequency decreases, so for humans to perceive infrasound, the sound pressure must be sufficiently high. Although the ear is the primary organ for sensing low sound, at higher intensities it is possible to feel infrasound vibrations in various parts of the body.
Infrasound is sound at frequencies lower than the low frequency end of human hearing threshold at 20 Hz. It is known, however, that humans can perceive sounds below this frequency at very high pressure levels. [1]
The sounds produced by bottlenose dolphins are lower in frequency and range typically between 75 and 150,000 Hz. The higher frequencies in this range are also used for echolocation and the lower frequencies are commonly associated with social interaction as the signals travel much farther distances.
Although pitch retrieval mechanisms in the auditory system are still a matter of debate, [76] [115] TFS n information may be used to retrieve the pitch of low-frequency pure tones [75] and estimate the individual frequencies of the low-numbered (ca. 1st-8th) harmonics of a complex sound, [116] frequencies from which the fundamental frequency of ...
It is approximately the quietest sound a young human with undamaged hearing can detect at 1 kHz. [4] The threshold of hearing is frequency-dependent and it has been shown that the ear's sensitivity is best at frequencies between 2 kHz and 5 kHz, [5] where the threshold reaches as low as −9 dB SPL. [6] [7] [8]
An equal-loudness contour.Note peak sensitivity around 2–4 kHz, in the middle of the voice frequency band.. The human ear can nominally hear sounds in the range 20 to 20 000 Hz.
The second component is known as "distortion" or "clarity loss" due to selective frequency loss. [8] Consonants, due to their higher frequency, are typically affected first. [7] For example, the sounds "s" and "t" are often difficult to hear for those with hearing loss, affecting clarity of speech. [9] NIHL can affect either one or both ears.
Both constant exposure to loud sounds (85 dB(A) or above) and one-time exposure to extremely loud sounds (120 dB(A) or above) may cause permanent hearing loss. [9] Noise-induced hearing loss (NIHL) typically manifests as elevated hearing thresholds (i.e. less sensitivity or muting) between 3000 and 6000 Hz, centred at 4000 Hz. As noise damage ...