Search results
Results From The WOW.Com Content Network
A newton is equal to 1 kg⋅m/s 2, and a kilogram-force is 9.80665 N, [3] meaning that 1 kgf/cm 2 equals 98.0665 kilopascals (kPa). In some older publications, kilogram-force per square centimetre is abbreviated ksc instead of kg/cm 2.
The pascal (Pa) or kilopascal (kPa) as a unit of pressure measurement is widely used throughout the world and has largely replaced the pounds per square inch (psi) unit, except in some countries that still use the imperial measurement system or the US customary system, including the United States.
psi: Kilogram-force: kg/cm2: kg/cm 2: 98,066.5: kilogram per square centimetre: kilograms per square centimetre: kilogram per square centimeter: kilograms per square centimeter: psi: Kilogram-force: kgf/cm2: kgf/cm 2: 98,066.5: kilogram-force per square centimetre: kilograms-force per square centimetre: kilogram-force per square centimeter ...
The kilopound per square inch (ksi) is a scaled unit derived from psi, equivalent to a thousand psi (1000 lbf/in 2). ksi are not widely used for gas pressures. They are mostly used in materials science, where the tensile strength of a material is measured as a large number of psi. [4] The conversion in SI units is 1 ksi = 6.895 MPa, or 1 MPa ...
The CGS unit of pressure is the barye (Ba), equal to 1 dyn·cm −2, or 0.1 Pa. Pressure is sometimes expressed in grams-force or kilograms-force per square centimetre ("g/cm 2" or "kg/cm 2") and the like without properly identifying the force units. But using the names kilogram, gram, kilogram-force, or gram-force (or their symbols) as units ...
1.5 psi Pressure increase per meter of a water column [26] 10 kPa 1.5 psi Decrease in air pressure when going from Earth sea level to 1000 m elevation [citation needed] +13 kPa +1.9 psi High air pressure for human lung, measured for trumpet player making staccato high notes [48] < +16 kPa +2.3 psi
In engineering and physics, g c is a unit conversion factor used to convert mass to force or vice versa. [1] It is defined as = In unit systems where force is a derived unit, like in SI units, g c is equal to 1.
The classical piston theory is a powerful aerodynamic tool. From the use of the momentum equation and the assumption of isentropic perturbations, one obtains the following basic piston theory formula for the surface pressure: