Search results
Results From The WOW.Com Content Network
Enzymes are listed here by their classification in the International Union of Biochemistry and Molecular Biology's Enzyme Commission (EC) numbering system: Category:Oxidoreductases (EC 1) ( Oxidoreductase )
This list contains a list of sub-classes for the seventh group of Enzyme Commission numbers, EC 7, translocases, placed in numerical order as determined by the Nomenclature Committee of the International Union of Biochemistry and Molecular Biology.
The Enzyme Commission number (EC number) is a numerical classification scheme for enzymes, based on the chemical reactions they catalyze. [1] As a system of enzyme nomenclature, every EC number is associated with a recommended name for the corresponding enzyme-catalyzed reaction. EC numbers do not specify enzymes but enzyme-catalyzed reactions.
Codon–amino acids mappings may be the biological information system at the primordial origin of life on Earth. [122] While amino acids and consequently simple peptides must have formed under different experimentally probed geochemical scenarios, the transition from an abiotic world to the first life forms is to a large extent still unresolved ...
In enzymology, an aminoacylase (EC 3.5.1.14) is an enzyme that catalyzes the chemical reaction. N-acyl-L-amino acid + H 2 O ⇌ carboxylate + L-amino acid. Thus, the two substrates of this enzyme are N-acyl-L-amino acid and H 2 O, whereas its two products are carboxylate and L-amino acid.
Enzymes appear in the subcategory Category:Enzymes by function according to the EC number classification: . EC 1 Oxidoreductases: catalyze oxidation/reduction reactions; EC 2 Transferases: transfer a functional group (e.g. a methyl or phosphate group)
This enzyme participates in 6 metabolic pathways: urea cycle and metabolism of amino groups, phenylalanine metabolism, tryptophan metabolism, cyanoamino acid metabolism, benzoate degradation via coa ligation, and styrene degradation. Amidases contain a conserved stretch of approximately 130 amino acids known as the AS sequence.
These enzymes can be identified by a conserved HEXXH motif in their active site. This motif is crucial for the enzyme's function, as the histidine amino acids within the motif coordinate (bind) the metal ion, which then uses hydrolysis to break the peptide bond between the first amino acid and the rest of the protein. [9]