When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Mohr–Coulomb theory - Wikipedia

    en.wikipedia.org/wiki/Mohr–Coulomb_theory

    Mohr–Coulomb theory is a mathematical model (see yield surface) describing the response of brittle materials such as concrete, or rubble piles, to shear stress as well as normal stress. Most of the classical engineering materials follow this rule in at least a portion of their shear failure envelope.

  3. Soil sloughing - Wikipedia

    en.wikipedia.org/wiki/Soil_sloughing

    According to the Mohr-Coulomb equation, the cohesion of a soil is defined as the shear strength at zero normal pressure on the surface of failure. [4] The shear force is a function of cohesion, normal stress on rupture surface, and angle of internal friction.

  4. Shear strength (soil) - Wikipedia

    en.wikipedia.org/wiki/Shear_strength_(soil)

    For undrained, constant volume shearing, the Tresca theory may be used to predict the shear strength, but for drained conditions, the Mohr–Coulomb theory may be used. Two important theories of soil shear are the critical state theory and the steady state theory. There are key differences between the critical state condition and the steady ...

  5. Andrew N. Schofield - Wikipedia

    en.wikipedia.org/wiki/Andrew_N._Schofield

    By Professor Schofield, The Mohr Coulomb equation, popularised by Terzaghi, and underpinning developments in soil mechanics since the 1930s, is simply wrong. Terzaghi made soil mechanics a science, made a mistake when he said soil’s strength is provided by cohesion and friction. [14]

  6. Lateral earth pressure - Wikipedia

    en.wikipedia.org/wiki/Lateral_earth_pressure

    An example of lateral earth pressure overturning a retaining wall. The lateral earth pressure is the pressure that soil exerts in the horizontal direction. It is important because it affects the consolidation behavior and strength of the soil and because it is considered in the design of geotechnical engineering structures such as retaining walls, basements, tunnels, deep foundations and ...

  7. Cohesion (geology) - Wikipedia

    en.wikipedia.org/wiki/Cohesion_(geology)

    Cohesion is the component of shear strength of a rock or soil that is independent of interparticle friction. In soils, true cohesion is caused by following: Electrostatic forces in stiff overconsolidated clays (which may be lost through weathering) Cementing by Fe 2 O 3, Ca CO 3, Na Cl, etc. There can also be apparent cohesion. This is caused by:

  8. Charles-Augustin de Coulomb - Wikipedia

    en.wikipedia.org/wiki/Charles-Augustin_de_Coulomb

    Shear resistance law: Coulomb formulated the shear resistance of soils as = + ⁡, where represents cohesion, is normal stress, and is the angle of internal friction. Active and passive earth pressure : He introduced the concepts of active and passive earth pressure limits, which describe the conditions under which soil exerts pressure on a ...

  9. Drucker–Prager yield criterion - Wikipedia

    en.wikipedia.org/wiki/Drucker–Prager_yield...

    Since the Drucker–Prager yield surface is a smooth version of the Mohr–Coulomb yield surface, it is often expressed in terms of the cohesion and the angle of internal friction that are used to describe the Mohr–Coulomb yield surface. [2]