Search results
Results From The WOW.Com Content Network
In physics, Hooke's law is an empirical law which states that the force (F) needed to extend or compress a spring by some distance (x) scales linearly with respect to that distance—that is, F s = kx, where k is a constant factor characteristic of the spring (i.e., its stiffness), and x is small compared to the total possible deformation of the spring.
The linear motion can be of two types: uniform linear motion, with constant velocity (zero acceleration); and non-uniform linear motion, with variable velocity (non-zero acceleration). The motion of a particle (a point-like object) along a line can be described by its position x {\displaystyle x} , which varies with t {\displaystyle t} (time).
Suppose a particle moves at a uniform rate along a line from A to B (Figure 2) in a given time (say, one second), while in the same time, the line AB moves uniformly from its position at AB to a position at DC, remaining parallel to its original orientation throughout. Accounting for both motions, the particle traces the line AC.
There are two main descriptions of motion: dynamics and kinematics.Dynamics is general, since the momenta, forces and energy of the particles are taken into account. In this instance, sometimes the term dynamics refers to the differential equations that the system satisfies (e.g., Newton's second law or Euler–Lagrange equations), and sometimes to the solutions to those equations.
Force control – Force control is given by the machine; Force gauge – Instrument for measuring force; Orders of magnitude (force) – Comparison of a wide range of physical forces; Parallel force system – Situation in mechanical engineering; Rigid body – Physical object which does not deform when forces or moments are exerted on it
In classical mechanics, for a body with constant mass, the (vector) acceleration of the body's center of mass is proportional to the net force vector (i.e. sum of all forces) acting on it (Newton's second law): = =, where F is the net force acting on the body, m is the mass of the body, and a is the center-of-mass acceleration.
Classical mechanics is the branch of physics used to describe the motion of macroscopic objects. [1] It is the most familiar of the theories of physics. The concepts it covers, such as mass, acceleration, and force, are commonly used and known. [2]
The line of action is shown as the vertical dotted line. It extends in both directions relative to the force vector, but is most useful where it defines the moment arm. In physics , the line of action (also called line of application ) of a force ( F → ) is a geometric representation of how the force is applied.