Ad
related to: inverse property of multiplication
Search results
Results From The WOW.Com Content Network
For every x except 0, y represents its multiplicative inverse. The graph forms a rectangular hyperbola. In mathematics, a multiplicative inverse or reciprocal for a number x, denoted by 1/x or x −1, is a number which when multiplied by x yields the multiplicative identity, 1. The multiplicative inverse of a fraction a/b is b/a. For the ...
The conditions for existence of left-inverse or right-inverse are more complicated, since a notion of rank does not exist over rings. The set of n × n invertible matrices together with the operation of matrix multiplication and entries from ring R form a group, the general linear group of degree n, denoted GL n (R).
Another property is the following: ... Multiplication by the inverse is then done easily by solving a system with multiple right-hand sides, + = ...
A modular multiplicative inverse of a modulo m can be found by using the extended Euclidean algorithm. The Euclidean algorithm determines the greatest common divisor (gcd) of two integers, say a and m. If a has a multiplicative inverse modulo m, this gcd must be 1. The last of several equations produced by the algorithm may be solved for this gcd.
The inverse operation of multiplication is division. For example, since 4 multiplied by 3 equals 12, 12 divided by 3 equals 4. ... This is known as the zero property ...
The transpose of a scalar is the same scalar. Together with the preceding property, this implies that the transpose is a linear map from the space of m × n matrices to the space of the n × m matrices. =.
Logarithms and exponentials with the same base cancel each other. This is true because logarithms and exponentials are inverse operations—much like the same way multiplication and division are inverse operations, and addition and subtraction are inverse operations.
Any involution is a bijection.. The identity map is a trivial example of an involution. Examples of nontrivial involutions include negation (x ↦ −x), reciprocation (x ↦ 1/x), and complex conjugation (z ↦ z) in arithmetic; reflection, half-turn rotation, and circle inversion in geometry; complementation in set theory; and reciprocal ciphers such as the ROT13 transformation and the ...