Search results
Results From The WOW.Com Content Network
Absorption half-life 1 h, elimination half-life 12 h. Biological half-life (elimination half-life, pharmacological half-life) is the time taken for concentration of a biological substance (such as a medication) to decrease from its maximum concentration (C max) to half of C max in the blood plasma.
An effective half-life of the drug will involve a decay constant that represents the sum of the biological and physical decay constants, as in the formula: = + With the decay constant it is possible to calculate the effective half-life using the formula:
For example, the medical sciences refer to the biological half-life of drugs and other chemicals in the human body. The converse of half-life (in exponential growth) is doubling time. The original term, half-life period, dating to Ernest Rutherford's discovery of the principle in 1907, was shortened to half-life in the early 1950s. [1]
The model outputs for a drug can be used in industry (for example, in calculating bioequivalence when designing generic drugs) or in the clinical application of pharmacokinetic concepts. Clinical pharmacokinetics provides many performance guidelines for effective and efficient use of drugs for human-health professionals and in veterinary medicine .
There is an important relationship between clearance, elimination half-life and distribution volume. The elimination rate constant of a drug K e l {\displaystyle K_{el}} is equivalent to total clearance divided by the distribution volume
A loading dose is most useful for drugs that are eliminated from the body relatively slowly, i.e. have a long systemic half-life. Such drugs need only a low maintenance dose in order to keep the amount of the drug in the body at the appropriate therapeutic level, but this also means that, without an initial higher dose, it would take a long ...
Another use is in the therapeutic drug monitoring of drugs with a narrow therapeutic index. For example, gentamicin is an antibiotic that can be nephrotoxic (kidney damaging) and ototoxic (hearing damaging); measurement of gentamicin through concentrations in a patient's plasma and calculation of the AUC is used to guide the dosage of this drug ...
The solution of this differential equation is useful in calculating the concentration after the administration of a single dose of drug via IV bolus injection: = C t is concentration after time t; C 0 is the initial concentration (t=0) K is the elimination rate constant