When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Strain (mechanics) - Wikipedia

    en.wikipedia.org/wiki/Strain_(mechanics)

    The state of strain at a material point of a continuum body is defined as the totality of all the changes in length of material lines or fibers, the normal strain, which pass through that point and also the totality of all the changes in the angle between pairs of lines initially perpendicular to each other, the shear strain, radiating from ...

  3. Shear stress - Wikipedia

    en.wikipedia.org/wiki/Shear_stress

    The formula to calculate average shear stress τ or force per unit area is: [1] =, where F is the force applied and A is the cross-sectional area.. The area involved corresponds to the material face parallel to the applied force vector, i.e., with surface normal vector perpendicular to the force.

  4. Shearing (physics) - Wikipedia

    en.wikipedia.org/wiki/Shearing_(physics)

    The rectangularly-framed section has deformed into a parallelogram (shear strain), but the triangular roof trusses have resisted the shear stress and remain undeformed. In continuum mechanics, shearing refers to the occurrence of a shear strain, which is a deformation of a material substance in which parallel internal surfaces slide past one another.

  5. Shear thinning - Wikipedia

    en.wikipedia.org/wiki/Shear_thinning

    In rheology, shear thinning is the non-Newtonian behavior of fluids whose viscosity decreases under shear strain. It is sometimes considered synonymous for pseudo- plastic behaviour, [ 1 ] [ 2 ] and is usually defined as excluding time-dependent effects, such as thixotropy .

  6. Simple shear - Wikipedia

    en.wikipedia.org/wiki/Simple_shear

    This deformation is differentiated from a pure shear by virtue of the presence of a rigid rotation of the material. [2] [3] When rubber deforms under simple shear, its stress-strain behavior is approximately linear. [4] A rod under torsion is a practical example for a body under simple shear. [5]

  7. Shear modulus - Wikipedia

    en.wikipedia.org/wiki/Shear_modulus

    Shear strain. In materials science, shear modulus or modulus of rigidity, denoted by G, or sometimes S or μ, is a measure of the elastic shear stiffness of a material and is defined as the ratio of shear stress to the shear strain: [1]

  8. Shear strength - Wikipedia

    en.wikipedia.org/wiki/Shear_strength

    In engineering, shear strength is the strength of a material or component against the type of yield or structural failure when the material or component fails in shear. A shear load is a force that tends to produce a sliding failure on a material along a plane that is parallel to the direction of the force.

  9. Strain rate - Wikipedia

    en.wikipedia.org/wiki/Strain_rate

    Similarly, the sliding rate, also called the deviatoric strain rate or shear strain rate is the derivative with respect to time of the shear strain. Engineering sliding strain can be defined as the angular displacement created by an applied shear stress, τ {\displaystyle \tau } .