Search results
Results From The WOW.Com Content Network
A point (,,) of the contour line of an implicit surface with equation (,,) = and parallel projection with direction has to fulfill the condition (,,) = (,,) =, because has to be a tangent vector, which means any contour point is a point of the intersection curve of the two implicit surfaces
In geometry, an intersection is a point, line, or curve common to two or more objects (such as lines, curves, planes, and surfaces). The simplest case in Euclidean geometry is the line–line intersection between two distinct lines , which either is one point (sometimes called a vertex ) or does not exist (if the lines are parallel ).
The nine intersections of = and = (). In mathematics, Cramer's paradox or the Cramer–Euler paradox [1] is the statement that the number of points of intersection of two higher-order curves in the plane can be greater than the number of arbitrary points that are usually needed to define one such curve.
In detail, the number of points required to determine a curve of degree d is the number of monomials of degree d, minus 1 from projectivization. For the first few d these yield: d = 1: 2 and 1: two points determine a line, two lines intersect in a point, d = 2: 5 and 4: five points determine a conic, two conics intersect in four points,
First we consider the intersection of two lines L 1 and L 2 in two-dimensional space, with line L 1 being defined by two distinct points (x 1, y 1) and (x 2, y 2), and line L 2 being defined by two distinct points (x 3, y 3) and (x 4, y 4). [2] The intersection P of line L 1 and L 2 can be defined using determinants.
In the case of plane curves, Bézout's theorem was essentially stated by Isaac Newton in his proof of Lemma 28 of volume 1 of his Principia in 1687, where he claims that two curves have a number of intersection points given by the product of their degrees. [3] However, Newton had stated the theorem as early as 1665. [4]
Let X be a Riemann surface.Then the intersection number of two closed curves on X has a simple definition in terms of an integral. For every closed curve c on X (i.e., smooth function :), we can associate a differential form of compact support, the Poincaré dual of c, with the property that integrals along c can be calculated by integrals over X:
Note that unlike for distinct curves C and D, the actual points of intersection are not defined, because they depend on a choice of C′, but the “self intersection points of C′′ can be interpreted as k generic points on C, where k = C · C. More properly, the self-intersection point of C is the generic point of C, taken with multiplicity ...