Ad
related to: maths find a word hard
Search results
Results From The WOW.Com Content Network
Some math problems have been challenging us for centuries, and while brain-busters like these hard math problems may seem impossible, someone is bound to solve ’em eventually. Well, m aybe .
Many mathematical problems have been stated but not yet solved. These problems come from many areas of mathematics, such as theoretical physics, computer science, algebra, analysis, combinatorics, algebraic, differential, discrete and Euclidean geometries, graph theory, group theory, model theory, number theory, set theory, Ramsey theory, dynamical systems, and partial differential equations.
This is a list of puzzles that cannot be solved. An impossible puzzle is a puzzle that cannot be resolved, either due to lack of sufficient information, or any number of logical impossibilities.
The question is whether or not, for all problems for which an algorithm can verify a given solution quickly (that is, in polynomial time), an algorithm can also find that solution quickly. Since the former describes the class of problems termed NP, while the latter describes P, the question is equivalent to asking whether all problems in NP are ...
4 Pics 1 Word continues to delight and frustrate us. Occasionally, we'll rattle off four to five puzzles with little effort before getting stuck for upwards of an hour, whereupon which we eventually
In other words, any problem in EXPTIME is solvable by a deterministic Turing machine in O(2 p(n)) time, where p(n) is a polynomial function of n. A decision problem is EXPTIME-complete if it is in EXPTIME, and every problem in EXPTIME has a polynomial-time many-one reduction to it. A number of problems are known to be EXPTIME-complete.
Quadratic programming (NP-hard in some cases, P if convex) Subset sum problem [3]: SP13 Variations on the Traveling salesman problem. The problem for graphs is NP-complete if the edge lengths are assumed integers. The problem for points on the plane is NP-complete with the discretized Euclidean metric and rectilinear metric.
If the problem mandates that the constraints be satisfied, as in the above discussion, the constraints are sometimes referred to as hard constraints.However, in some problems, called flexible constraint satisfaction problems, it is preferred but not required that certain constraints be satisfied; such non-mandatory constraints are known as soft constraints.