Search results
Results From The WOW.Com Content Network
Electron and hole mobility are special cases of electrical mobility of charged particles in a fluid under an applied electric field. When an electric field E is applied across a piece of material, the electrons respond by moving with an average velocity called the drift velocity, . Then the electron mobility μ is defined as =.
The electron–hole pair is the fundamental unit of generation and recombination in inorganic semiconductors, corresponding to an electron transitioning between the valence band and the conduction band where generation of an electron is a transition from the valence band to the conduction band and recombination leads to a reverse transition.
For holes, is the number of holes per unit volume in the valence band. To calculate this number for electrons, we start with the idea that the total density of conduction-band electrons, n 0 {\displaystyle n_{0}} , is just adding up the conduction electron density across the different energies in the band, from the bottom of the band E c ...
When an electron leaves a helium atom, it leaves an electron hole in its place. This causes the helium atom to become positively charged. In physics, chemistry, and electronic engineering, an electron hole (often simply called a hole) is a quasiparticle denoting the lack of an electron at a position where one could exist in an atom or atomic lattice.
Electrical mobility is the ability of charged particles (such as electrons or protons) to move through a medium in response to an electric field that is pulling them. The separation of ions according to their mobility in gas phase is called ion mobility spectrometry, in liquid phase it is called electrophoresis.
where D is the diffusion coefficient for the electron in the considered medium, n is the number of electrons per unit volume (i.e. number density), q is the magnitude of charge of an electron, μ is electron mobility in the medium, and E = −dΦ/dx (Φ potential difference) is the electric field as the potential gradient of the electric potential.
We are interested in determining the mobility of the carriers, diffusion constant and relaxation time. In the following, we reduce the problem to one dimension. The equations for electron and hole currents are: = + +
The "holes" are, in effect, electron vacancies in the valence-band electron population of the semiconductor and are treated as charge carriers because they are mobile, moving from atom site to atom site. In n-type semiconductors, electrons in the conduction band move through the crystal, resulting in an electric current.