When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Sum of normally distributed random variables - Wikipedia

    en.wikipedia.org/wiki/Sum_of_normally...

    This means that the sum of two independent normally distributed random variables is normal, with its mean being the sum of the two means, and its variance being the sum of the two variances (i.e., the square of the standard deviation is the sum of the squares of the standard deviations). [1]

  3. Convolution of probability distributions - Wikipedia

    en.wikipedia.org/wiki/Convolution_of_probability...

    The probability distribution of the sum of two or more independent random variables is the convolution of their individual distributions. The term is motivated by the fact that the probability mass function or probability density function of a sum of independent random variables is the convolution of their corresponding probability mass functions or probability density functions respectively.

  4. Illustration of the central limit theorem - Wikipedia

    en.wikipedia.org/wiki/Illustration_of_the...

    Thus, the density of the sum of m+n terms of a sequence of independent identically distributed variables equals the convolution of the densities of the sums of m terms and of n term. In particular, the density of the sum of n+1 terms equals the convolution of the density of the sum of n terms with the original density (the "sum" of 1 term).

  5. Algebra of random variables - Wikipedia

    en.wikipedia.org/wiki/Algebra_of_random_variables

    Product distribution; Mellin transform; Sum of normally distributed random variables; List of convolutions of probability distributions – the probability measure of the sum of independent random variables is the convolution of their probability measures. Law of total expectation; Law of total variance; Law of total covariance; Law of total ...

  6. Cramér's decomposition theorem - Wikipedia

    en.wikipedia.org/wiki/Cramér's_decomposition...

    Let a random variable ξ be normally distributed and admit a decomposition as a sum ξ=ξ 1 +ξ 2 of two independent random variables. Then the summands ξ 1 and ξ 2 are normally distributed as well. A proof of Cramér's decomposition theorem uses the theory of entire functions.

  7. Normal distribution - Wikipedia

    en.wikipedia.org/wiki/Normal_distribution

    The simplest case of a normal distribution is known as the standard normal distribution or unit normal distribution. This is a special case when μ = 0 {\textstyle \mu =0} and σ 2 = 1 {\textstyle \sigma ^{2}=1} , and it is described by this probability density function (or density): φ ( z ) = e − z 2 2 2 π . {\displaystyle \varphi (z ...

  8. Proofs involving ordinary least squares - Wikipedia

    en.wikipedia.org/wiki/Proofs_involving_ordinary...

    Note in the later section “Maximum likelihood” we show that under the additional assumption that errors are distributed normally, the estimator ^ is proportional to a chi-squared distribution with n – p degrees of freedom, from which the formula for expected value would immediately follow. However the result we have shown in this section ...

  9. Unbiased estimation of standard deviation - Wikipedia

    en.wikipedia.org/wiki/Unbiased_estimation_of...

    Correction factor versus sample size n.. When the random variable is normally distributed, a minor correction exists to eliminate the bias.To derive the correction, note that for normally distributed X, Cochran's theorem implies that () / has a chi square distribution with degrees of freedom and thus its square root, / has a chi distribution with degrees of freedom.