When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Hagen–Poiseuille equation - Wikipedia

    en.wikipedia.org/wiki/Hagen–Poiseuille_equation

    The no slip boundary condition at the pipe wall requires that u = 0 at r = R (radius of the pipe), which yields c 2 = ⁠ GR 2 / 4μ ⁠. Thus we have finally the following parabolic velocity profile: = (). The maximum velocity occurs at the pipe centerline (r = 0), u max = ⁠ GR 2 / 4μ ⁠.

  3. Plug flow - Wikipedia

    en.wikipedia.org/wiki/Plug_flow

    In fluid mechanics, plug flow is a simple model of the velocity profile of a fluid flowing in a pipe. In plug flow, the velocity of the fluid is assumed to be constant across any cross-section of the pipe perpendicular to the axis of the pipe. The plug flow model assumes there is no boundary layer adjacent to the inner wall of the pipe.

  4. Entrance length (fluid dynamics) - Wikipedia

    en.wikipedia.org/wiki/Entrance_length_(fluid...

    In fluid dynamics, the entrance length is the distance a flow travels after entering a pipe before the flow becomes fully developed. [1] Entrance length refers to the length of the entry region, the area following the pipe entrance where effects originating from the interior wall of the pipe propagate into the flow as an expanding boundary layer.

  5. Law of the wall - Wikipedia

    en.wikipedia.org/wiki/Law_of_the_wall

    The mean streamwise velocity profile + is improved for + < with an eddy viscosity formulation based on a near-wall turbulent kinetic energy + function and the van Driest mixing length equation. Comparisons with DNS data of fully developed turbulent channel flows for 109 < R e τ < 2003 {\displaystyle 109<Re_{\tau }<2003} showed good agreement.

  6. Turbulence kinetic energy - Wikipedia

    en.wikipedia.org/wiki/Turbulence_kinetic_energy

    The TKE can be defined to be half the sum of the variances σ² (square of standard deviations σ) of the fluctuating velocity components: = (+ +) = ((′) ¯ + (′) ¯ + (′) ¯), where each turbulent velocity component is the difference between the instantaneous and the average velocity: ′ = ¯ (Reynolds decomposition).

  7. Dynamic similarity (Reynolds and Womersley numbers)

    en.wikipedia.org/wiki/Dynamic_similarity...

    When the Womersley number is large (around 10 or greater), it shows that the flow is dominated by oscillatory inertial forces and that the velocity profile is flat. When the Womersley parameter is low, viscous forces tend to dominate the flow, velocity profiles are parabolic in shape, and the center-line velocity oscillates in phase with the ...

  8. Pipe flow - Wikipedia

    en.wikipedia.org/wiki/Pipe_flow

    Depending on the effect of viscosity relative to inertia, as represented by the Reynolds number, the flow can be either laminar or turbulent. For circular pipes of different surface roughness, at a Reynolds number below the critical value of approximately 2000 [2] pipe flow will ultimately be laminar, whereas above the critical value turbulent ...

  9. Turbulence - Wikipedia

    en.wikipedia.org/wiki/Turbulence

    The sky depicted in Vincent van Gogh's 1889 painting, The Starry Night has been studied for its turbulent flow. [1]In fluid dynamics, turbulence or turbulent flow is fluid motion characterized by chaotic changes in pressure and flow velocity.