Search results
Results From The WOW.Com Content Network
SAMV (iterative sparse asymptotic minimum variance [1] [2]) is a parameter-free superresolution algorithm for the linear inverse problem in spectral estimation, direction-of-arrival (DOA) estimation and tomographic reconstruction with applications in signal processing, medical imaging and remote sensing.
V-statistics are a class of statistics named for Richard von Mises who developed their asymptotic distribution theory in a fundamental paper in 1947. [1] V-statistics are closely related to U-statistics [2] [3] (U for "unbiased") introduced by Wassily Hoeffding in 1948. [4]
The empirical distribution function is an estimate of the cumulative distribution function that generated the points in the sample. It converges with probability 1 to that underlying distribution, according to the Glivenko–Cantelli theorem .
Formally, it is the variance of the score, or the expected value of the observed information. The role of the Fisher information in the asymptotic theory of maximum-likelihood estimation was emphasized and explored by the statistician Sir Ronald Fisher (following some initial results by Francis Ysidro Edgeworth).
In addition, if the random variable has a normal distribution, the sample covariance matrix has a Wishart distribution and a slightly differently scaled version of it is the maximum likelihood estimate. Cases involving missing data, heteroscedasticity, or autocorrelated residuals require deeper considerations.
In statistics, the delta method is a method of deriving the asymptotic distribution of a random variable. It is applicable when the random variable being considered can be defined as a differentiable function of a random variable which is asymptotically Gaussian .
A distribution is an ordered set of random variables Z i for i = 1, …, n, for some positive integer n. An asymptotic distribution allows i to range without bound, that is, n is infinite. A special case of an asymptotic distribution is when the late entries go to zero—that is, the Z i go to 0 as i goes to infinity. Some instances of ...
In the simplest case, an asymptotic distribution exists if the probability distribution of Z i converges to a probability distribution (the asymptotic distribution) as i increases: see convergence in distribution. A special case of an asymptotic distribution is when the sequence of random variables is always zero or Z i = 0 as i approaches ...