Search results
Results From The WOW.Com Content Network
The top wire carries a current I 2 through the magnetic field B 1, so (by the Lorentz force) the wire experiences a force F 12. (Not shown is the simultaneous process where the top wire makes a magnetic field which results in a force on the bottom wire.) In magnetostatics, the force of attraction or repulsion between two current-carrying wires ...
[6] [7] He investigated and discovered the rules which govern the field around a straight current-carrying wire: [8] The magnetic field lines encircle the current-carrying wire. The magnetic field lines lie in a plane perpendicular to the wire. If the direction of the current is reversed, the direction of the magnetic field reverses.
Lorentz force on a charged particle (of charge q) in motion (velocity v), used as the definition of the E field and B field. Here subscripts e and m are used to differ between electric and magnetic charges. The definitions for monopoles are of theoretical interest, although real magnetic dipoles can be described using pole strengths.
The validity of Ampère's model means that it is allowable to think of the magnetic material as if it consists of current-loops, and the total effect is the sum of the effect of each current-loop, and so the magnetic effect of a real magnet can be computed as the sum of magnetic effects of tiny pieces of magnetic material that are at a distance ...
The force on a current carrying wire is similar to that of a moving charge as expected since a current carrying wire is a collection of moving charges. A current-carrying wire feels a force in the presence of a magnetic field. The Lorentz force on a macroscopic current is often referred to as the Laplace force.
In this experiment, a static magnetic field runs through a long magnetic wire (e.g., an iron wire magnetized longitudinally). Outside of this wire the magnetic induction is zero, in contrast to the vector potential, which essentially depends on the magnetic flux through the cross-section of the wire and does not vanish outside.
By combining the Lorentz force law above with the definition of electric current, the following equation results, in the case of a straight stationary wire in a homogeneous field: [30] =, where ℓ is a vector whose magnitude is the length of the wire, and whose direction is along the wire, aligned with the direction of the conventional current I.
The magnetic field (marked B, indicated by red field lines) around wire carrying an electric current (marked I) Compass and wire apparatus showing Ørsted's experiment (video [1]) In electromagnetism , Ørsted's law , also spelled Oersted's law , is the physical law stating that an electric current induces a magnetic field .