Search results
Results From The WOW.Com Content Network
This list of mathematical series contains formulae for finite and infinite sums. It can be used in conjunction with other tools for evaluating sums. Here, is taken to have the value
Prefix sums are trivial to compute in sequential models of computation, by using the formula y i = y i − 1 + x i to compute each output value in sequence order. However, despite their ease of computation, prefix sums are a useful primitive in certain algorithms such as counting sort, [1] [2] and they form the basis of the scan higher-order function in functional programming languages.
In mathematics, the infinite series 1 / 2 + 1 / 4 + 1 / 8 + 1 / 16 + ··· is an elementary example of a geometric series that converges absolutely. The sum of the series is 1.
The summation of an explicit sequence is denoted as a succession of additions. For example, summation of [1, 2, 4, 2] is denoted 1 + 2 + 4 + 2, and results in 9, that is, 1 + 2 + 4 + 2 = 9. Because addition is associative and commutative, there is no need for parentheses, and the result is the same irrespective of the order of the summands ...
hash(S): returns a hash value for the static set S such that if equal(S 1, S 2) then hash(S 1) = hash(S 2) Other operations can be defined for sets with elements of a special type: sum(S): returns the sum of all elements of S for some definition of "sum". For example, over integers or reals, it may be defined as fold(0, add, S).
In 493 AD, Victorius of Aquitaine wrote a 98-column multiplication table which gave (in Roman numerals) the product of every number from 2 to 50 times and the rows were "a list of numbers starting with one thousand, descending by hundreds to one hundred, then descending by tens to ten, then by ones to one, and then the fractions down to 1/144 ...
One can then prove that this smoothed sum is asymptotic to − + 1 / 12 + CN 2, where C is a constant that depends on f. The constant term of the asymptotic expansion does not depend on f: it is necessarily the same value given by analytic continuation, − + 1 / 12 . [1]
Consider the sequence (5, 8, 3, 2). What is the total of this sequence? Answer: 5 + 8 + 3 + 2 = 18. This is arrived at by simple summation of the sequence. Now we insert the number 6 at the end of the sequence to get (5, 8, 3, 2, 6). What is the total of that sequence? Answer: 5 + 8 + 3 + 2 + 6 = 24. This is arrived at by simple summation of ...