Search results
Results From The WOW.Com Content Network
Reciprocity in electrical networks is a property of a circuit that relates voltages and currents at two points. The reciprocity theorem states that the current at one point in a circuit due to a voltage at a second point is the same as the current at the second point due to the same voltage at the first.
Whereas the above reciprocity theorems were for oscillating fields, Green's reciprocity is an analogous theorem for electrostatics with a fixed distribution of electric charge (Panofsky and Phillips, 1962). In particular, let denote the electric potential resulting from a total charge density .
In the case of a perfect electrical conductor, the electric currents that are impressed on the surface won't radiate due to Lorentz reciprocity. Thus, the original currents can be substituted with surface magnetic currents only. A similar formulation for a perfect magnetic conductor would use impressed electric currents. [1]
You are free: to share – to copy, distribute and transmit the work; to remix – to adapt the work; Under the following conditions: attribution – You must give appropriate credit, provide a link to the license, and indicate if changes were made.
A circuit diagram (or: wiring diagram, electrical diagram, elementary diagram, electronic schematic) is a graphical representation of an electrical circuit. A pictorial circuit diagram uses simple images of components, while a schematic diagram shows the components and interconnections of the circuit using standardized symbolic representations.
Generalization of circuit theory based on scalar quantities to vectorial currents is a necessity for newly evolving circuits such as spin circuits. [clarification needed] Generalized circuit variables consist of four components: scalar current and vector spin current in x, y, and z directions. The voltages and currents each become vector ...
Reciprocity in linear systems is the principle that a response Rab, measured at a location (and direction if applicable) a, when the system has an excitation signal applied at a location (and direction if applicable) b, is exactly equal to Rba which is the response at location b, when that same excitation is applied at a. This applies for all ...
Main page; Contents; Current events; Random article; About Wikipedia; Contact us; Pages for logged out editors learn more