When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Reciprocity (electrical networks) - Wikipedia

    en.wikipedia.org/wiki/Reciprocity_(electrical...

    Reciprocity in electrical networks is a property of a circuit that relates voltages and currents at two points. The reciprocity theorem states that the current at one point in a circuit due to a voltage at a second point is the same as the current at the second point due to the same voltage at the first.

  3. Scattering parameters - Wikipedia

    en.wikipedia.org/wiki/Scattering_parameters

    In the S-parameter approach, an electrical network is regarded as a 'black box' containing various interconnected basic electrical circuit components or lumped elements such as resistors, capacitors, inductors and transistors, which interacts with other circuits through ports.

  4. Network analysis (electrical circuits) - Wikipedia

    en.wikipedia.org/wiki/Network_analysis...

    Generalization of circuit theory based on scalar quantities to vectorial currents is a necessity for newly evolving circuits such as spin circuits. [clarification needed] Generalized circuit variables consist of four components: scalar current and vector spin current in x, y, and z directions. The voltages and currents each become vector ...

  5. Electrical susceptance - Wikipedia

    en.wikipedia.org/wiki/Electrical_susceptance

    In electrical engineering, susceptance (B) is the imaginary part of admittance (Y = G + jB), where the real part is conductance (G). The reciprocal of admittance is impedance (Z = R + jX), where the imaginary part is reactance (X) and the real part is resistance (R). In SI units, susceptance is measured in siemens (S).

  6. Surface equivalence principle - Wikipedia

    en.wikipedia.org/wiki/Surface_equivalence_principle

    In the case of a perfect electrical conductor, the electric currents that are impressed on the surface won't radiate due to Lorentz reciprocity. Thus, the original currents can be substituted with surface magnetic currents only. A similar formulation for a perfect magnetic conductor would use impressed electric currents. [1]

  7. Series and parallel circuits - Wikipedia

    en.wikipedia.org/wiki/Series_and_parallel_circuits

    Since electrical conductance is reciprocal to resistance, the expression for total conductance of a parallel circuit of resistors is simply: = = = + + +. The relations for total conductance and resistance stand in a complementary relationship: the expression for a series connection of resistances is the same as for parallel connection of ...

  8. Ohm's law - Wikipedia

    en.wikipedia.org/wiki/Ohm's_law

    Ohm's law, in the form above, is an extremely useful equation in the field of electrical/electronic engineering because it describes how voltage, current and resistance are interrelated on a "macroscopic" level, that is, commonly, as circuit elements in an electrical circuit. Physicists who study the electrical properties of matter at the ...

  9. Admittance parameters - Wikipedia

    en.wikipedia.org/wiki/Admittance_parameters

    Equivalent circuit for an arbitrary two-port admittance matrix. The circuit uses Norton sources with voltage-controlled current sources. Y-equivalent circuit for a reciprocal two-port network. The Y-parameter matrix for the two-port network is probably the most common. In this case the relationship between the port voltages, port currents and ...