Search results
Results From The WOW.Com Content Network
In mathematics, the determinant is a scalar-valued function of the entries of a square matrix.The determinant of a matrix A is commonly denoted det(A), det A, or | A |.Its value characterizes some properties of the matrix and the linear map represented, on a given basis, by the matrix.
[a] This means that the function that maps y to f(x) + J(x) ⋅ (y – x) is the best linear approximation of f(y) for all points y close to x. The linear map h → J(x) ⋅ h is known as the derivative or the differential of f at x. When m = n, the Jacobian matrix is square, so its determinant is a well-defined function of x, known as the ...
The determinant of this matrix is −1, as the area of the green parallelogram at the right is 1, but the map reverses the orientation, since it turns the counterclockwise orientation of the vectors to a clockwise one. The determinant of a square matrix A (denoted det(A) or | A |) is a number encoding
Thus the only alternating multilinear functions with () = are restricted to the function defined by the Leibniz formula, and it in fact also has these three properties. Hence the determinant can be defined as the only function det : M n ( K ) → K {\displaystyle \det :M_{n}(\mathbb {K} )\rightarrow \mathbb {K} } with these three properties.
In functional analysis, a branch of mathematics, it is sometimes possible to generalize the notion of the determinant of a square matrix of finite order (representing a linear transformation from a finite-dimensional vector space to itself) to the infinite-dimensional case of a linear operator S mapping a function space V to itself.
Lemma 1. ′ =, where ′ is the differential of . This equation means that the differential of , evaluated at the identity matrix, is equal to the trace.The differential ′ is a linear operator that maps an n × n matrix to a real number.
The determinant of the Hessian matrix, when evaluated at a critical point of a function, is equal to the Gaussian curvature of the function considered as a manifold. The eigenvalues of the Hessian at that point are the principal curvatures of the function, and the eigenvectors are the principal directions of curvature.
Main page; Contents; Current events; Random article; About Wikipedia; Contact us