Search results
Results From The WOW.Com Content Network
Thermodynamically the flow of substances from one compartment to another can occur in the direction of a concentration or electrochemical gradient or against it. If the exchange of substances occurs in the direction of the gradient, that is, in the direction of decreasing potential, there is no requirement for an input of energy from outside the system; if, however, the transport is against ...
In cellular biology, active transport is the movement of molecules or ions across a cell membrane from a region of lower concentration to a region of higher concentration—against the concentration gradient. Active transport requires cellular energy to achieve this movement.
Facilitated diffusion may occur through three mechanisms: uniport, symport, or antiport. The difference between each mechanism depends on the direction of transport, in which uniport is the only transport not coupled to the transport of another solute. [4] Uniporter carrier proteins work by binding to one molecule or substrate at a time ...
Intracellular transport is the movement of vesicles and substances within a cell. Intracellular transport is required for maintaining homeostasis within the cell by responding to physiological signals. [1] Proteins synthesized in the cytosol are distributed to their respective organelles, according to their specific amino acid’s sorting ...
A membrane transport protein is a membrane protein involved in the movement of ions, small molecules, and macromolecules, such as another protein, across a biological membrane. Transport proteins are integral transmembrane proteins; that is they exist
In plants, sucrose transport is distributed throughout the plant by the proton-pump where the pump, as discussed above, creates a gradient of protons so that there are many more on one side of the membrane than the other. As the protons diffuse back across the membrane, the free energy liberated by this diffusion is used to co-transport sucrose ...
Secondary active transport is when one solute moves down the electrochemical gradient to produce enough energy to force the transport of another solute from low concentration to high concentration. [ citation needed ] An example of where this occurs is in the movement of glucose within the proximal convoluted tubule (PCT).
Ion transporters are classified as a super family of transporters that contain 12 families of transporters. [5] These families are part of the Transport Classification (TC) system that is used by the International Union of Biochemistry and Molecular Biology (IUBMB) and are grouped according to characteristics such as the substrates being transported, the transport mechanism, the energy source ...