Search results
Results From The WOW.Com Content Network
RMR differs from basal metabolic rate (BMR) because BMR measurements must meet total physiological equilibrium whereas RMR conditions of measurement can be altered and defined by the contextual limitations. Therefore, BMR is measured in the elusive "perfect" steady state, whereas RMR measurement is more accessible and thus, represents most, if ...
The respiratory exchange ratio (RER) is the ratio between the metabolic production of carbon dioxide (CO 2) and the uptake of oxygen (O 2). [3] [4] The ratio is determined by comparing exhaled gases to room air. Measuring this ratio is equal to RQ only at rest or during mild to moderate aerobic exercise without the accumulation of lactate.
The basal metabolic rate accounts for about 70% of the daily calorie expenditure by individuals. It is influenced by several factors. In humans, BMR typically declines by 1–2% per decade after age 20, mostly due to loss of fat-free mass, [3] although the variability between individuals is high. [4]
The free-air correction adjusts measurements of gravity to what would have been measured at mean sea level, that is, on the geoid. The gravitational attraction of Earth below the measurement point and above mean sea level is ignored and it is imagined that the observed gravity is measured in air, hence the name.
An air separation plant separates atmospheric air into its primary components, typically nitrogen and oxygen, and sometimes also argon and other rare inert gases. The most common method for air separation is fractional distillation. Cryogenic air separation units (ASUs) are built to provide nitrogen or oxygen and often co-produce argon.
The amount of mass that can be lifted by hydrogen in air per unit volume at sea level, equal to the density difference between hydrogen and air, is: (1.292 - 0.090) kg/m 3 = 1.202 kg/m 3. and the buoyant force for one m 3 of hydrogen in air at sea level is: 1 m 3 × 1.202 kg/m 3 × 9.8 N/kg= 11.8 N
The freestream is the air far upstream of an aerodynamic body, that is, before the body has a chance to deflect, slow down or compress the air. Freestream conditions are usually denoted with a ∞ {\displaystyle \infty } symbol, e.g. V ∞ {\displaystyle V_{\infty }} , meaning the freestream velocity.
Small cells are available for a wide range of air interfaces including GSM, CDMA2000, TD-SCDMA, W-CDMA, LTE and 5G. In 3GPP terminology, a Home Node B (HNB) is a 3G femtocell. A Home eNode B (HeNB) is an LTE femtocell.