Ad
related to: respiration crash biology quizletstudy.com has been visited by 100K+ users in the past month
Search results
Results From The WOW.Com Content Network
Aerial respiration is the 'gulping' of air at the surface of water to directly extract oxygen from the atmosphere. Aerial respiration evolved in fish that were exposed to more frequent hypoxia; also, species that engage in aerial respiration tend to be more hypoxia tolerant than those which do not air-breath during the hypoxia.
In physiology, respiration is the transport of oxygen from the outside environment to the cells within tissues, ... human biology 146149; C.Michael Hogan. 2011 ...
During the mid-Tertiary period, a species crash in the Southern Ocean opened up wide range of empty niches to colonize. Despite the hemoglobin-less mutants being less fit, the lack of competition allowed even the mutants to leave descendants that colonized empty habitats and evolved compensations for their mutations.
Red circles show the location and size of many dead zones (in 2008). Black dots show dead zones of unknown size. The size and number of marine dead zones—areas where the deep water is so low in dissolved oxygen that sea creatures cannot survive (except for some specialized bacteria)—have grown in the past half-century.
An exergonic reaction (such as cellular respiration) is a reaction that releases free energy in the process of the reaction. The progress of the reaction is shown by the line. Activation energy (1) slows down the reaction.
If more carbon dioxide than usual has been lost by a short period of hyperventilation, respiration will be slowed down or halted until the alveolar partial pressure of carbon dioxide has returned to 5.3 kPa (40 mmHg). It is therefore strictly speaking untrue that the primary function of the respiratory system is to rid the body of carbon ...
Anaerobic respiration is correspondingly less efficient than aerobic respiration. In the absence of oxygen, not all of the carbon-carbon bonds in glucose can be broken to release energy. A great deal of extractable energy is left in the waste products. Anaerobic respiration generally occurs in prokaryotes in environments that do not contain oxygen.
Full acclimatization requires days or even weeks. Gradually, the body compensates for the respiratory alkalosis by renal excretion of bicarbonate, allowing adequate respiration to provide oxygen without risking alkalosis. It takes about four days at any given altitude and can be enhanced by drugs such as acetazolamide. [23]