Search results
Results From The WOW.Com Content Network
A primitive root modulo m exists if and only if m is equal to 2, 4, p k or 2p k, where p is an odd prime number and k is a positive integer. If a primitive root modulo m exists, then there are exactly φ ( φ ( m )) such primitive roots, where φ is the Euler's totient function.
Modulo is a mathematical jargon that was introduced into mathematics in the book Disquisitiones Arithmeticae by Carl Friedrich Gauss in 1801. [3] Given the integers a, b and n, the expression "a ≡ b (mod n)", pronounced "a is congruent to b modulo n", means that a − b is an integer multiple of n, or equivalently, a and b both share the same remainder when divided by n.
In computing, the modulo operation returns the remainder or signed remainder of a division, after one number is divided by another, called the modulus of the operation.. Given two positive numbers a and n, a modulo n (often abbreviated as a mod n) is the remainder of the Euclidean division of a by n, where a is the dividend and n is the divisor.
The corresponding addition and multiplication of equivalence classes is known as modular arithmetic. From the point of view of abstract algebra, congruence modulo is a congruence relation on the ring of integers, and arithmetic modulo occurs on the corresponding quotient ring.
In analytic number theory and related branches of mathematics, a complex-valued arithmetic function: is a Dirichlet character of modulus (where is a positive integer) if for all integers and : [1] χ ( a b ) = χ ( a ) χ ( b ) ; {\displaystyle \chi (ab)=\chi (a)\chi (b);} that is, χ {\displaystyle \chi } is completely multiplicative .
In mathematics, in the field of algebraic number theory, a modulus (plural moduli) (or cycle, [1] or extended ideal [2]) is a formal product of places of a global field (i.e. an algebraic number field or a global function field). It is used to encode ramification data for abelian extensions of a global field.
Bulk modulus, a measure of compression resistance; Elastic modulus, a measure of stiffness; Shear modulus, a measure of elastic stiffness; Young's modulus, a specific elastic modulus; Modulo operation (a % b, mod(a, b), etc.), in both math and programming languages; results in remainder of a division; Casting modulus used in Chvorinov's rule.
The multiplicative order of a number a modulo n is the order of a in the multiplicative group whose elements are the residues modulo n of the numbers coprime to n, and whose group operation is multiplication modulo n. This is the group of units of the ring Z n; it has φ(n) elements, φ being Euler's totient function, and is denoted as U(n) or ...