Search results
Results From The WOW.Com Content Network
Ω(n), the prime omega function, is the number of prime factors of n counted with multiplicity (so it is the sum of all prime factor multiplicities). A prime number has Ω(n) = 1. The first: 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37 (sequence A000040 in the OEIS). There are many special types of prime numbers. A composite number has Ω(n) > 1.
In number theory, the prime omega functions and () count the number of prime factors of a natural number . Thereby (little omega) counts each distinct prime factor, whereas the related function () (big omega) counts the total number of prime factors of , honoring their multiplicity (see arithmetic function).
In mathematics, the fundamental theorem of arithmetic, also called the unique factorization theorem and prime factorization theorem, states that every integer greater than 1 can be represented uniquely as a product of prime numbers, up to the order of the factors. [3] [4] [5] For example,
Because the set of primes is a computably enumerable set, by Matiyasevich's theorem, it can be obtained from a system of Diophantine equations. Jones et al. (1976) found an explicit set of 14 Diophantine equations in 26 variables, such that a given number k + 2 is prime if and only if that system has a solution in nonnegative integers: [7]
The prime number theorem is obtained there in an equivalent form that the Cesàro sum of the values of the Liouville function is zero. The Liouville function is () where () is the number of prime factors, with multiplicity, of the integer .
Euler's totient function is a multiplicative function, meaning that if two numbers m and n are relatively prime, then φ(mn) = φ(m)φ(n). [ 4 ] [ 5 ] This function gives the order of the multiplicative group of integers modulo n (the group of units of the ring Z / n Z {\displaystyle \mathbb {Z} /n\mathbb {Z} } ). [ 6 ]
The prime signature of a number having prime factorization … is the multiset {,, …,}. For example, all prime numbers have a prime signature of {1}, the squares of primes have a prime signature of {2}, the products of 2 distinct primes have a prime signature of {1, 1 } and the products of a square of a prime and a different prime (e.g. 12 ...
Because the prime factorization of a highly composite number uses all of the first k primes, every highly composite number must be a practical number. [8] Due to their ease of use in calculations involving fractions , many of these numbers are used in traditional systems of measurement and engineering designs.