When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Parallelogram - Wikipedia

    en.wikipedia.org/wiki/Parallelogram

    A simple (non-self-intersecting) quadrilateral is a parallelogram if and only if any one of the following statements is true: [2] [3] Two pairs of opposite sides are parallel (by definition). Two pairs of opposite sides are equal in length. Two pairs of opposite angles are equal in measure. The diagonals bisect each other.

  3. Quadrilateral - Wikipedia

    en.wikipedia.org/wiki/Quadrilateral

    In a crossed quadrilateral, the four "interior" angles on either side of the crossing (two acute and two reflex, all on the left or all on the right as the figure is traced out) add up to 720°. [10] Crossed trapezoid (US) or trapezium (Commonwealth): [11] a crossed quadrilateral in which one pair of nonadjacent sides is parallel (like a ...

  4. Corresponding sides and corresponding angles - Wikipedia

    en.wikipedia.org/wiki/Corresponding_sides_and...

    The orange and green quadrilaterals are congruent; the blue one is not congruent to them. Congruence between the orange and green ones is established in that side BC corresponds to (in this case of congruence, equals in length) JK, CD corresponds to KL, DA corresponds to LI, and AB corresponds to IJ, while angle ∠C corresponds to (equals) angle ∠K, ∠D corresponds to ∠L, ∠A ...

  5. Trapezoid - Wikipedia

    en.wikipedia.org/wiki/Trapezoid

    There is some disagreement whether parallelograms, which have two pairs of parallel sides, should be regarded as trapezoids. Some define a trapezoid as a quadrilateral having only one pair of parallel sides (the exclusive definition), thereby excluding parallelograms. [5]

  6. Euler's quadrilateral theorem - Wikipedia

    en.wikipedia.org/wiki/Euler's_quadrilateral_theorem

    Euler's quadrilateral theorem or Euler's law on quadrilaterals, named after Leonhard Euler (1707–1783), describes a relation between the sides of a convex quadrilateral and its diagonals. It is a generalisation of the parallelogram law which in turn can be seen as generalisation of the Pythagorean theorem .

  7. Rhombus - Wikipedia

    en.wikipedia.org/wiki/Rhombus

    Not every parallelogram is a rhombus, though any parallelogram with perpendicular diagonals (the second property) is a rhombus. In general, any quadrilateral with perpendicular diagonals, one of which is a line of symmetry, is a kite. Every rhombus is a kite, and any quadrilateral that is both a kite and parallelogram is a rhombus.

  8. Square - Wikipedia

    en.wikipedia.org/wiki/Square

    A parallelogram with one right vertex angle and two adjacent equal sides [1] A quadrilateral with four equal sides and four right angles; that is, a quadrilateral that is both a rhombus and a rectangle [1] A quadrilateral where the diagonals are equal, and are the perpendicular bisectors of each other (i.e., a rhombus with equal diagonals) [2]

  9. Angle - Wikipedia

    en.wikipedia.org/wiki/Angle

    Such angles are called a linear pair of angles. [20] However, supplementary angles do not have to be on the same line and can be separated in space. For example, adjacent angles of a parallelogram are supplementary, and opposite angles of a cyclic quadrilateral (one whose vertices all fall on a single circle) are supplementary.