Search results
Results From The WOW.Com Content Network
11 0 (Take the last digit of the number, and check if it is 0 or 5) 11 0 (If it is 0, take the remaining digits, discarding the last) 11 × 2 = 22 (Multiply the result by 2) 110 ÷ 5 = 22 (The result is the same as the original number divided by 5) If the last digit is 5. 85 (The original number)
The first thousand values of φ(n).The points on the top line represent φ(p) when p is a prime number, which is p − 1. [1]In number theory, Euler's totient function counts the positive integers up to a given integer n that are relatively prime to n.
The totient function φ(n) is equal to 2 when n is one of the three values 3, 4, and 6. Thus, if we take any one of these three values as n, then either of the other two values can be used as the m for which φ(m) = φ(n).
Apart from division by zero being undefined, the quotient is not an integer unless the dividend is an integer multiple of the divisor. For example, 26 cannot be divided by 11 to give an integer. Such a case uses one of five approaches: Say that 26 cannot be divided by 11; division becomes a partial function.
Long division is the standard algorithm used for pen-and-paper division of multi-digit numbers expressed in decimal notation. It shifts gradually from the left to the right end of the dividend, subtracting the largest possible multiple of the divisor (at the digit level) at each stage; the multiples then become the digits of the quotient, and the final difference is then the remainder.
The positive integers may be partially ordered by divisibility: if a divides b (that is, if b is an integer multiple of a) write a ≤ b (or equivalently, b ≥ a). (Note that the usual magnitude-based definition of ≤ is not used here.) Under this ordering, the positive integers become a lattice, with meet given by the gcd and join given by ...
Digit sums and digital roots can be used for quick divisibility tests: a natural number is divisible by 3 or 9 if and only if its digit sum (or digital root) is divisible by 3 or 9, respectively. For divisibility by 9, this test is called the rule of nines and is the basis of the casting out nines technique for checking calculations.
The two first subsections, are proofs of the generalized version of Euclid's lemma, namely that: if n divides ab and is coprime with a then it divides b. The original Euclid's lemma follows immediately, since, if n is prime then it divides a or does not divide a in which case it is coprime with a so per the generalized version it divides b.