Search results
Results From The WOW.Com Content Network
However, real-world systems are often nonlinear and multidimensional, in some instances rendering explicit equation-based modeling problematic. Empirical models, which infer patterns and associations from the data instead of using hypothesized equations, represent a natural and flexible framework for modeling complex dynamics.
In mathematics and science, a nonlinear system (or a non-linear system) is a system in which the change of the output is not proportional to the change of the input. [1] [2] Nonlinear problems are of interest to engineers, biologists, [3] [4] [5] physicists, [6] [7] mathematicians, and many other scientists since most systems are inherently nonlinear in nature. [8]
The Lyapunov function is a nonlinear technique used to analyze the stability of the zero solutions of a system of differential equations. Hopfield networks were specifically designed such that their underlying dynamics could be described by the Lyapunov function. Stability in biological systems is called homeostasis. Particularly of interest to ...
Nonlinear system#Nonlinear differential equations To a section : This is a redirect from a topic that does not have its own page to a section of a page on the subject. For redirects to embedded anchors on a page, use {{ R to anchor }} instead .
A coupled map lattice (CML) is a dynamical system that models the behavior of nonlinear systems (especially partial differential equations).They are predominantly used to qualitatively study the chaotic dynamics of spatially extended systems.
Nonlinear Dynamics. Models of bifurcation and chaos by Elmer G. Wiens; Sci.Nonlinear FAQ 2.0 (Sept 2003) provides definitions, explanations and resources related to nonlinear science; Online books or lecture notes. Geometrical theory of dynamical systems. Nils Berglund's lecture notes for a course at ETH at the advanced undergraduate level.
The method removes secular terms—terms growing without bound—arising in the straightforward application of perturbation theory to weakly nonlinear problems with finite oscillatory solutions. [1] [2] The method is named after Henri Poincaré, [3] and Anders Lindstedt. [4]
The nonlinear damping parameter is equal to μ = 8.53, while the forcing has amplitude A = 1.2 and angular frequency ω = 2π/10. The forced, or driven, Van der Pol oscillator takes the 'original' function and adds a driving function A sin( ωt ) to give a differential equation of the form: