When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Multinomial logistic regression - Wikipedia

    en.wikipedia.org/.../Multinomial_logistic_regression

    Multinomial logistic regression is known by a variety of other names, including polytomous LR, [2] [3] multiclass LR, softmax regression, multinomial logit (mlogit), the maximum entropy (MaxEnt) classifier, and the conditional maximum entropy model.

  3. Multiclass classification - Wikipedia

    en.wikipedia.org/wiki/Multiclass_classification

    Based on learning paradigms, the existing multi-class classification techniques can be classified into batch learning and online learning. Batch learning algorithms require all the data samples to be available beforehand. It trains the model using the entire training data and then predicts the test sample using the found relationship.

  4. Training, validation, and test data sets - Wikipedia

    en.wikipedia.org/wiki/Training,_validation,_and...

    A training data set is a data set of examples used during the learning process and is used to fit the parameters (e.g., weights) of, for example, a classifier. [9] [10]For classification tasks, a supervised learning algorithm looks at the training data set to determine, or learn, the optimal combinations of variables that will generate a good predictive model. [11]

  5. Logistic regression - Wikipedia

    en.wikipedia.org/wiki/Logistic_regression

    In statistics, the logistic model (or logit model) is a statistical model that models the log-odds of an event as a linear combination of one or more independent variables. In regression analysis , logistic regression [ 1 ] (or logit regression ) estimates the parameters of a logistic model (the coefficients in the linear or non linear ...

  6. Logistic model tree - Wikipedia

    en.wikipedia.org/wiki/Logistic_model_tree

    In computer science, a logistic model tree (LMT) is a classification model with an associated supervised training algorithm that combines logistic regression (LR) and decision tree learning. [1] [2] Logistic model trees are based on the earlier idea of a model tree: a decision tree that has linear regression models at its leaves to provide a ...

  7. Supervised learning - Wikipedia

    en.wikipedia.org/wiki/Supervised_learning

    Active learning: Instead of assuming that all of the training examples are given at the start, active learning algorithms interactively collect new examples, typically by making queries to a human user. Often, the queries are based on unlabeled data, which is a scenario that combines semi-supervised learning with active learning.

  8. Multi-label classification - Wikipedia

    en.wikipedia.org/wiki/Multi-label_classification

    Based on learning paradigms, the existing multi-label classification techniques can be classified into batch learning and online machine learning. Batch learning algorithms require all the data samples to be available beforehand. It trains the model using the entire training data and then predicts the test sample using the found relationship.

  9. Multiple instance learning - Wikipedia

    en.wikipedia.org/wiki/Multiple_Instance_Learning

    The actual term multi-instance learning was introduced in the middle of the 1990s, by Dietterich et al. while they were investigating the problem of drug activity prediction. [3] They tried to create a learning system that could predict whether new molecule was qualified to make some drug, or not, through analyzing a collection of known molecules.