Search results
Results From The WOW.Com Content Network
Thus, bonding is considered ionic where the ionic character is greater than the covalent character. The larger the difference in electronegativity between the two types of atoms involved in the bonding, the more ionic (polar) it is. Bonds with partially ionic and partially covalent character are called polar covalent bonds. For example, Na–Cl ...
Ionic bonding leads to separate positive and negative ions. Ionic charges are commonly between −3e to +3e. Ionic bonding commonly occurs in metal salts such as sodium chloride (table salt). A typical feature of ionic bonds is that the species form into ionic crystals, in which no ion is specifically paired with any single other ion in a ...
Ionic bonding is a kind of chemical bonding that arises from the mutual attraction of oppositely charged ions. Ions of like charge repel each other, and ions of opposite charge attract each other. Therefore, ions do not usually exist on their own, but will bind with ions of opposite charge to form a crystal lattice.
In chemistry, a salt or ionic compound is a chemical compound consisting of an assembly of positively charged ions and negatively charged ions , [1] which results in a compound with no net electric charge (electrically neutral). The constituent ions are held together by electrostatic forces termed ionic bonds.
Since neither element has a stronger affinity to donate or gain electrons, it causes the elements to share electrons so both elements have a more stable octet. Ionic bonding occurs when valence electrons are completely transferred between elements. Opposite to covalent bonding, this chemical bond creates two oppositely charged ions.
To form an ionic bond, a halogen atom can remove an electron from another atom in order to form an anion (e.g., F −, Cl −, etc.). To form a covalent bond, one electron from the halogen and one electron from another atom form a shared pair (e.g., in the molecule H–F, the line represents a shared pair of valence electrons, one from H and ...
Covalent and ionic bonding form a continuum, with ionic character increasing with increasing difference in the electronegativity of the participating atoms. Covalent bonding corresponds to sharing of a pair of electrons between two atoms of essentially equal electronegativity (for example, C–C and C–H bonds in aliphatic hydrocarbons).
Bonds between hydrogen and the other elements range from being highly ionic to somewhat covalent. Some hydrides, e.g. boron hydrides, do not conform to classical electron counting rules and the bonding is described in terms of multi-centered bonds, whereas the interstitial hydrides often involve metallic bonding.